当前位置: X-MOL 学术Publ. Astron. Soc. Aust. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A linear formation-flying astronomical interferometer in low Earth orbit
Publications of the Astronomical Society of Australia ( IF 6.3 ) Pub Date : 2020-05-29 , DOI: 10.1017/pasa.2020.13
Jonah T. Hansen , Michael J. Ireland

Space interferometry is the inevitable end point of high angular resolution astrophysics, and a key technology that can be leveraged to analyse exoplanet formation and atmospheres with exceptional detail. However, the anticipated cost of large missions, such as Darwin and TPF-I, and inadequate technology readiness levels have resulted in limited developments since the late 2000s. Here, we present a feasibility study into a small-scale formation-flying interferometric array in low Earth orbit, which will aim to prove the technical concepts involved with space interferometry while still making unique astrophysical measurements. We will detail the proposed system architecture and metrology system, as well as present orbital simulations that show that the array should be stable enough to perform interferometry with <50 m s–1 yr–1 delta-v and one thruster per spacecraft. We also conduct observability simulations to identify which parts of the sky are visible for a given orbital configuration. We conclude with optimism that this design is achievable, but a more detailed control simulation factoring in a demonstrated metrology system is the next step to demonstrate full mission feasibility.

中文翻译:

近地轨道线性编队飞行天文干涉仪

空间干涉测量是高角分辨率天体物理学的必然终点,也是可用于分析系外行星形成和大气的关键技术,具有非凡的细节。然而,大型任务的预期成本,例如达尔文TPF-I,以及技术准备水平不足导致自 2000 年代后期以来的发展有限。在这里,我们对低地球轨道上的小规模编队飞行干涉仪阵列进行了可行性研究,旨在证明空间干涉仪所涉及的技术概念,同时仍然进行独特的天体物理测量。我们将详细介绍所提出的系统架构和计量系统,以及目前的轨道模拟,这些模拟表明该阵列应该足够稳定,可以在 <50 ms 的时间内执行干涉测量–1–1delta-v 和每个航天器一个推进器。我们还进行了可观测性模拟,以确定对于给定的轨道配置,天空的哪些部分是可见的。我们乐观地得出结论,这种设计是可以实现的,但是在演示的计量系统中考虑更详细的控制模拟是证明完整任务可行性的下一步。
更新日期:2020-05-29
down
wechat
bug