当前位置: X-MOL 学术Combust. Flame › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Burning rate and flame structure of cocrystals of CL-20 and a polycrystalline composite crystal of HMX/AP
Combustion and Flame ( IF 4.4 ) Pub Date : 2020-09-01 , DOI: 10.1016/j.combustflame.2020.04.009
Morgan D. Ruesch , Michael S. Powell , Aman Satija , Jonathan P. Ruesch , Vasant S. Vuppuluri , Robert P. Lucht , Steven F. Son

Abstract The synthesis and development of novel energetic materials is a costly, challenging process. Rather than synthesizing new materials, cocrystallization provides the potential opportunity to achieve improved properties of existing energetic materials. This work examined the effects of cocrystallization on the deflagration of a 2:1 molar cocrystal of CL-20 and HMX as well as a 1:1 molar cocrystal of CL-20 and TNT. A hydrogen peroxide (HP) solvate of CL-20 as well as a polycrystalline composite of HMX and ammonium perchlorate (AP) were also studied. A physical mixture of each material was also tested for comparison. The burning rate of each material was measured as a function of pressure. Flame structure during self-deflagration was examined using planar laser-induced fluorescence (PLIF) of CN and OH. The burning rate of the HMX/CL-20 cocrystal and the CL-20/HP solvate closely matched that of CL-20, but the burning rate of the TNT/CL-20 cocrystal was between the burning rate of its coformers. All HMX/AP materials had a higher burning rate than either HMX or AP individually and the burning rate of a physical mixture was found to be a function of particle size. The differences in the burning rate of the physical mixtures and composite crystal of HMX/AP can be explained by changes in the flame structure observed using PLIF. Burning rates and flame structure of the cocrystals were found to closely match those of their respective physical mixtures when smaller particle sizes were used (approx. less than 100 µm). The results obtained demonstrate that the deflagration behavior of the coformers is not indicative of the deflagration behavior of the resulting physical mixture or cocrystal. However, changes in the resulting flame structure greatly affect the burning rate.

中文翻译:

CL-20共晶与HMX/AP多晶复合晶体的燃烧速率和火焰结构

摘要 新型含能材料的合成和开发是一个昂贵且具有挑战性的过程。与合成新材料不同,共结晶提供了实现现有含能材料性能改进的潜在机会。这项工作研究了共结晶对 CL-20 和 HMX 的 2:1 摩尔共晶以及 CL-20 和 TNT 的 1:1 摩尔共晶的爆燃的影响。还研究了 CL-20 的过氧化氢 (HP) 溶剂化物以及 HMX 和高氯酸铵 (AP) 的多晶复合材料。还测试了每种材料的物理混合物以进行比较。测量每种材料的燃烧速率作为压力的函数。使用 CN 和 OH 的平面激光诱导荧光 (PLIF) 检查自爆期间的火焰结构。HMX/CL-20 共晶和 CL-20/HP 溶剂化物的燃烧速率与 CL-20 的燃烧速率密切匹配,但 TNT/CL-20 共晶的燃烧速率介于其共形成物的燃烧速率之间。所有 HMX/AP 材料的燃烧速率均高于单独的 HMX 或 AP,并且发现物理混合物的燃烧速率是粒度的函数。HMX/AP 的物理混合物和复合晶体燃烧速率的差异可以通过使用 PLIF 观察到的火焰结构的变化来解释。当使用较小的粒径(约小于 100 µm)时,发现共晶的燃烧速率和火焰结构与它们各自的物理混合物的燃烧速率和火焰结构非常匹配。获得的结果表明,共形成物的爆燃行为并不表示所得物理混合物或共晶的爆燃行为。然而,由此产生的火焰结构的变化极大地影响了燃烧速度。
更新日期:2020-09-01
down
wechat
bug