当前位置: X-MOL 学术Mov. Ecol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Editorial: thematic series "Integrating movement ecology with biodiversity research".
Movement Ecology ( IF 4.1 ) Pub Date : 2020-05-25 , DOI: 10.1186/s40462-020-00210-0
Florian Jeltsch 1 , Volker Grimm 1, 2
Affiliation  

Movement ecology and biodiversity research are distinct subdisciplines of ecology. To make progress in both of them, they need to be better integrated. Movement ecology provides a unifying framework, based on first principles, for studying the movement of organisms. Being launched as a declared discipline only about 10 years ago [17], movement ecology has developed much technology and analytical tools to decipher how animals integrate information about their environment, experience, and innate states to make movement decisions [5, 9]. Still, the focus on individual organisms makes it difficult to address the ecological consequences of movement for populations, communities, and ecosystems. Moreover, putting movement into its broader ecological context could have important repercussions on the framework of movement ecology itself. Similar feedbacks occurred in other fields focusing on individual organisms, where putting individual-level theories into ecological context helped identifying their limitations and hence led to theory refinement. Good examples for such positive feedbacks are provided by ‘energy budget theory’ (e.g. [15]) and ‘optimal foraging theory’ (e.g. [20, 21]).

Biodiversity research has a longer history, with its roots going back to community ecology and biogeography. It explores the emergence, maintenance, and function of diversity at all levels of biological organization. Because of its strong focus on the dynamics and coexistence of species, individuals and their behavior are usually not addressed explicitly. Movement, however, is particularly important to consider for the majority of species, which have low abundances and are thus strongly affected by temporal and spatial heterogeneity and individual interactions. The recently proposed conceptual framework of “coviability” [12] therefore suggests a better integration of individual organism and their behavior into community theory and, hence, biodiversity research. Moreover, also for another key question of biodiversity research, how species composition will change due to range shifts and invasive species, a mechanistic understanding of movement, in particular dispersal, is critical [22]. Hence, correlative species distribution modelling from macroecology needs to be complemented by mechanistic modelling of population dynamics and dispersal (e.g., [19, 30]).

In fact, evidence is accumulating that many of the mechanisms that shape biodiversity are mediated by organismal movement. Movement promotes diversity both directly through species’ own mobility patterns and indirectly through mobile-link functions of moving animals [13]. This includes the important role of animal vectors that transport seeds, pollen, larvae, fungi, bacteria, and even adult organisms. Widely discussed dispersal-related mechanisms affecting biodiversity are mass effects, colonization-competition trade-offs and dispersal limitation [11]. Moreover, movement patterns of organisms can critically influence community assembly and species coexistence in less obvious ways by, for example, reducing exploitation competition in spatiotemporally heterogeneous environments [14], strengthening predator effects on prey [1], or modifying abiotic conditions in critical ways [25]. Despite of this obvious relevance of movement, highly aggregated representations of movement still prevail in biodiversity research, such as dispersal kernels or space-use patterns, which ignore how moving organism actually interact and navigate through heterogeneous habitat.

Biodiversity research has a species, or population perspective, while movement ecology has an individual organism perspective [11, 22]. This gap needs to be filled: Ignoring individuals and their behavior limits progress in our understanding of biodiversity. Likewise, with a sole focus on the movement process itself, movement ecology might contribute less to unifying ecology theory than has been expected from individual-based approaches in general [10].

Bridging the gap between biodiversity research and movement ecology is possible. First integrations demonstrated that individual movement capacities and strategies are critical in determining the persistence of species and communities in fragmented landscapes [3, 7], with changing climatic conditions [27], or in the presence of invasive species [4]. At the same time, the ever-increasing human impact on nature puts long-established movement patterns in jeopardy, and organismal movement is changing perceivably across scales [6, 8, 26, 29]. Yet, a full-fledged integration of movement ecology and biodiversity research is still in its infancy [11]. Empirically, we need more studies that not only focus on the movement of individuals, but also how they interact, while moving, with their environment and with other individuals, including their own and other species. From a theoretical viewpoint, there is a lack of modelling approaches that integrate individual movement and its consequences with population and community dynamics [12].

This thematic series aims to bring together studies that make a step towards the urgently needed integration of movement ecology and biodiversity research. It goes back to an international symposium held under this title in Potsdam, Germany, in September 2018. Organized by the project ‘BioMove’ (‘Integrating Biodiversity Research with Movement Ecology in dynamic agricultural landscapes’, www.biomove.org) presentations and lively discussions of more than 120 participants created a momentum and spirit that, inter alia, led to the initiative for this thematic series.

Three of the six contributions to this Thematic Series directly address multiple species and hence biodiversity. Meyer et al. [16] determine movement corridors for nine large forest-dwelling species of mammals, including tapir, two species of both deer and peccary, jaguar, puma, ocelot and the giant ant-eater. The latter as well as the white-lipped peccary and the tapir were treated as highly sensitive species, while the others were labelled “tolerant”. Two methods were compared: occupancy models based on camera trap data and step-selection functions based on GPS telemetry data. Both methods gave similar results for the tolerant species but not for the sensitive ones. This is one of the first movement ecology studies delineating corridors which addresses a whole suite of species. Recommendations for conservation are thus more comprehensive and are addressing biodiversity issues more directly. The increasing availability of geo-referenced presence and movement data will enable similar approaches of other species and communities in the future.

Bielčik et al. [2] review an important type of movement that so far has largely been ignored in movement ecology: hyphae-mediated movement in filamentous fungi. Recent advances in fungal ecology on topics like informed growth, mycelial translocations, or fungal highways have not yet been linked to theoretical developments within movement ecology. To better integrate mycology and movement ecology, the authors introduce the concept of “active movement in filamentous fungi”, defined as “the translocation of biomass within the environment brought about by the organism’s own energy resources.”

Schuppenhauer et al. [23] explore passive movement of soil-dwelling arthropods, springtails (Collembola) and moss mites (Oribatida), which play a key role for the ecosystem functions and services provided by soils. Their active movement is too limited to contribute to colonizing new soils. Passive movement via wind, other animals or sea currents has been studied before, but not yet for running waters. Using field and lab experiments the authors found that dispersal abilities of moss mites in terms of submersion survival and floating ability are high but also species specific. They conclude that running waters provide important and effective dispersal highways for many of these soil-living species.

The three other contributions to the Thematic Series focus on the movement of single species but address question that are highly relevant to biodiversity research. Seidel et al. [24] link high-resolution movement data of the Namibian black rhino to satellite data about habitat productivity. They estimated the recursion movement of 59 individuals by investigating patterns in 24-h displacement at different times of the day for intermediate-scale distances and daily for larger distances. Short-term recursion was highest for areas of median, not highest productivity. Rhinos stayed within the same area within their home ranges for several days, but recursion along larger time scales was observed as well and is likely to contribute to maintaining open landscapes and savannas.

The two remaining contributions address evolutionary aspects. Wolz et al. [28] compare traits characterizing dispersal and reproduction of a predatory wasp spider in its core populations (Southern France) and those in Baltic States to where the species‘range expanded over the recent decades. The question was whether this range expansion was related to evolutionary changes in dispersal. This was not the case, but differences were observed in the response of dispersal to winter conditions, i.e. increased ballooning for long-distance movement after winter conditions matching those in native habitats and decreased ballooning under mis-matching conditions. The authors interpret these differences in terms of intergenerational plasticity rather than as an evolutionary response.

Premier et al. [18] explore how, in highly fragmented landscapes, landscape structure and movement syndromes (“shy” vs. “bold”) interact in determining local and regional genetic diversity. They used the European lynx as an example and added neutral genetic markers to an existing individual-based model. “Bold” dispersers, who spend more time in matrix habitat, can “save” genetic diversity because they are more likely to reach other habitats, but also decrease genetic diversity because as founders in previously unoccupied habitats they may prevent establishing other genotypes. “Shy” dispersers, on the other hand, maintain a more gradual genetic drift. These findings have implications for reintroduction and reinforcement projects, which should take diversity in movement behaviour, expressed by different animal personalities, into account. In this context, well-tested individual-based population models, augmented by genetic aspects, are suitable tools.

As these different contributions show, the claimed integration can be approached from different angles, ranging from a more applied conservation focus to more basic research on species interactions and community dynamics. We welcomed both bottom-up and top-down approaches, i.e. movement studies relating their design and/or findings to biodiversity, and biodiversity studies, which related their design and/or findings to the movement of organisms. In either case, the common thread is provided by bringing movement and biodiversity dynamics in a common context. As discussed and exemplified by Jeltsch et al. [11] and Schlägel et al. [22], the integration of movement ecology and biodiversity research is challenging but also promising, leading to insights than can help us to better understand how biodiversity emerges, is maintained, and can be protected and restored.

  1. 1.

    Avgar T, Giladi I, Nathan R. Linking traits of foraging animals to spatial patterns of plants: social and solitary ants generate opposing patterns of surviving seeds. Ecol Lett. 2008;11:224–34.

    Article Google Scholar

  2. 2.

    Bielčik M, Aguilar-Trigueros CA, Lakovic M, Jeltsch F, Rillig MC. The role of active movement in fungal ecology and community assembly. Mov. Ecol. 2019;7(1):36. https://doi.org/10.1186/s40462-019-0180-6.

  3. 3.

    Brown LM, Fuda RK, Schtickzelle N, Coffman H, Jost A, Kazberouk A, Kemper E, Sass E, Crone EE. Using animal movement behavior to categorize land cover and predict consequences for connectivity and patch residence times. Landsc Ecol. 2017;32:1–14.

    Article Google Scholar

  4. 4.

    Drygala F, Zoller H. Spatial use and interaction of the invasive raccoon dog and the native red fox in Central Europe: competition or coexistence? Eur J Wildl Res. 2013;59:683–91.

    Article Google Scholar

  5. 5.

    Fagan WF, Lewis MA, Auger-Méthé M, Avgar T, Benhamou S, Breed G, LaDage L, Schlägel UE, Tang W, Papastamatiou YP, Forester J, Mueller T. Spatial memory and animal movement. Ecol Lett. 2013;16:1316–29.

    Article Google Scholar

  6. 6.

    Gibert JP, Chelini MC, Rosenthal MF, Delong JP. Crossing regimes of temperature dependence in animal movement. Glob Chang Biol. 2016;22:1722–36.

    Article Google Scholar

  7. 7.

    González-Varo JP, Carvalho CS, Arroyo JM, Jordano P. Unravelling seed dispersal through fragmented landscapes: Frugivore species operate unevenly as mobile links. Mol Ecol. 2017;26:4309–21.

    Article Google Scholar

  8. 8.

    Harris G, Thirgood S, Hopcraft JGC, Cromsigt JPGM, Berger J. Global decline in aggregated migrations of large terrestrial mammals. Endanger Species Res. 2009;7:55–76.

    Article Google Scholar

  9. 9.

    Hooten MB, Johnson DS, McClintock BT, Morales JM. Animal movement: statistical models for telemetry data. Boca Raton: CRC press/Taylor & Francis; 2017.

  10. 10.

    Huston M, DeAngelis D, Post W. New computer models unify ecological theory. BioScience. 1988;38:682–91.

    Article Google Scholar

  11. 11.

    Jeltsch F, Bonte D, Pe’er G, Reineking B, Leimgruber P, Balkenhol N, Schröder B, Buchmann CM, Mueller T, Blaum N, Zurell D, Böhning-Gaese K, Wiegand T, Eccard JA, Hofer H, Reeg J, Eggers U, Bauer S. Integrating movement ecology with biodiversity research - exploring new avenues to address spatiotemporal biodiversity dynamics. Mov Ecol. 2013;1:6. https://doi.org/10.1186/2051-3933-1-6.

    Article PubMed PubMed Central Google Scholar

  12. 12.

    Jeltsch F, Grimm V, Reeg J, Schlägel UE. Give chance a chance: from coexistence to coviability in biodiversity theory. Ecosphere. 2019;10:e02700.

    Article Google Scholar

  13. 13.

    Lundberg J, Moberg F. Mobile link organisms and ecosystem functioning: implications for ecosystem resilience and management. Ecosystems. 2003;6:87–98.

    Article Google Scholar

  14. 14.

    Macandza VA, Owen-Smith N, Cain JM III. Dynamic spatial partitioning and coexistence among tall grass grazers in an African savanna. Oikos. 2012;121:891–8.

    Article Google Scholar

  15. 15.

    Martin BT, Jager T, Nisbet RM, Preuss TG, Grimm V. Predicting population dynamics from the properties of individuals: a cross-level test of dynamic energy budget theory. Am Nat. 2013;181:506–19.

    Article Google Scholar

  16. 16.

    Meyer NF, Moreno R, Reyna-Hurtado R, Signer J, Balkenhol N. Towards the restoration of the Mesoamerican biological corridor for large mammals in Panama: comparing multi-species occupancy to movement models. Mov Ecol. 2020;8(1):1–14. https://doi.org/10.1186/s40462-019-0186-0.

  17. 17.

    Nathan R, Getz WM, Revilla E, Holyoak M, Kadmon R, Saltz D, Smouse PE. A movement ecology paradigm for unifying organismal movement research. Proc Natl Acad Sci U S A. 2008;105:19052–9.

    CAS Article Google Scholar

  18. 18.

    Premier J, Fickel J, Heurich M, Kramer-Schadt S. The boon and bane of boldness: movement syndrome as saviour and sink for population genetic diversity. Mov Ecol. 2020;8(16). https://doi.org/10.1186/s40462-020-00204-y.

  19. 19.

    Radchuk V, Kramer-Schadt S, Grimm V. Transferability of mechanistic ecological models is about emergence. Trends Ecol Evol. 2019. https://doi.org/10.1016/j.tree.2019.01.010.

    Article Google Scholar

  20. 20.

    Railsback SF, Harvey BC. Trait-mediated trophic interactions: is foraging theory keeping up? Trends Ecol Evol. 2013;28:119–25.

    Article Google Scholar

  21. 21.

    Railsback SF, Harvey BC. Modeling populations of adaptive individuals. Princeton: Princeton University. Press; 2020. p. 216.

  22. 22.

    Schlägel UE, Grimm V, Blaum N, Colangeli P, Dammhahn M, Eccard J, Hausmann S, Herde A, Hofer H, Joshi J, Kramer-Schadt S, Litwin M, Lozada-Gobilard SD, Müller MEH, Müller T, Nathan R, Petermann JS, Pirhofer-Walzl K, Radchuk V, Rillig MC, Roeleke M, Schäfer M, Scherer C, Schiro G, Scholz C, Teckentrup L, Tiedemann R, Ullmann W, Voigt C, Weithoff G, Jeltsch F. Movement-mediated community assembly and coexistence. Biol Rev. 2020. https://doi.org/10.1111/brv.12600.

  23. 23.

    Schuppenhauer MM, Lehmitz R, Xylander WER. Slow-moving soil organisms on a water highway: aquatic dispersal and survival potential of Oribatida and Collembola in running water. Mov Ecol. 2020;7(1):20. https://doi.org/10.1186/s40462-019-0165-5.

  24. 24.

    Seidel DP, Linklater WL, Kilian W, du Preez P, Getz WM. Mesoscale movement and recursion behaviors of Namibian black rhinos. Mov Ecol. 2019;7(1):1–14. https://doi.org/10.1186/s40462-019-0176-2.

  25. 25.

    Shantz AA, Ladd MC, Schrack E, Burkepile DE. Fish-derived nutrient hotspots shape coral reef benthic communities. Ecol Appl. 2015;25:2142–52.

    Article Google Scholar

  26. 26.

    Tucker MA, Böhning-Gaese K, Fagan WF, Fryxell JM, Van Moorter B, Alberts SC, et al. Moving in the anthropocene: global reductions in terrestrial mammalian movements. Science. 2018;359:466–9.

    CAS Article Google Scholar

  27. 27.

    Wittwer T, O’Hara RB, Caplat P, Hickler T, Smith HG. Long-term population dynamics of a migrant bird suggests interaction of climate change and competition with resident species. Oikos. 2015;124:1151–9.

    Article Google Scholar

  28. 28.

    Wolz M, Klockmann M, Schmitz T, Pekár S, Bonte D, Uhl G. Dispersal and life-history traits in a spider with rapid range expansion. Mov Ecol. 2020;8(1):1–11. https://doi.org/10.1186/s40462-019-0182-4.

  29. 29.

    Zhu Y-G, Gillings M, Simonet P, Stekel D, Banwart S, Penuelas J. Microbial mass movements. Science. 2017;357:1099–100.

    CAS Article Google Scholar

  30. 30.

    Zurell D, Grimm V, Rossmanith E, Zbinden N, Zimmermann NE, Schröder B. Uncertainty in predictions of range dynamics: black grouse climbing the Swiss Alps. Ecogr. 2012;35:590–603.

    Article Google Scholar

Download references

The authors are grateful for the support by Deutsche Forschungsgemeinschaft in the framework of the BioMove Research Training Group (DFG-GRK 2118/1).

Affiliations

  1. Plant Ecology and Nature Conservation, University of Potsdam, Am Mühlenberg 3, 14476, Potsdam, Germany

    Florian Jeltsch & Volker Grimm

  2. Department of Ecological Modelling, Helmholtz Centre for Environmental Research-UFZ, Permoserstr 15, 04318, Leipzig, Germany

    Volker Grimm

Authors
  1. Florian JeltschView author publications

    You can also search for this author in PubMed Google Scholar

  2. Volker GrimmView author publications

    You can also search for this author in PubMed Google Scholar

Contributions

The author(s) read and approved the final manuscript.

Corresponding author

Correspondence to Florian Jeltsch.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Reprints and Permissions

Verify currency and authenticity via CrossMark

Cite this article

Jeltsch, F., Grimm, V. Editorial: thematic series “Integrating movement ecology with biodiversity research”. Mov Ecol 8, 19 (2020). https://doi.org/10.1186/s40462-020-00210-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s40462-020-00210-0



中文翻译:

社论:主题系列“将运动生态学与生物多样性研究相结合”。

运动生态学和生物多样性研究是生态学的不同子学科。为了在这两个方面都取得进展,它们需要更好地整合。运动生态学为研究生物运动提供了一个基于第一原理的统一框架。运动生态学仅在大约十年前才被宣布为运动学科[17],它开发了许多技术和分析工具来破译动物如何整合有关其环境,经验和先天状态的信息来做出运动决策[5,9]。但是,由于只关注单个生物,因此很难解决运动对人口,社区和生态系统的生态后果。此外,将运动纳入其更广泛的生态环境可能会对运动生态本身的框架产生重要影响。在其他关注个体生物的领域中也发生了类似的反馈,在这些领域中,将个体水平的理论纳入生态环境有助于识别它们的局限性,从而导致理论的完善。“能量预算理论”(例如[15])和“最佳觅食理论”(例如[20、21])为此类积极反馈提供了很好的例子。

生物多样性研究历史悠久,其起源可追溯到社区生态学和生物地理学。它探讨了生物组织各个层面的多样性的出现,维持和功能。由于它非常关注物种的动态性和共存性,因此通常不会明确解决个人及其行为。然而,对于大多数物种来说,运动是特别重要的,因为它们的丰度低,因此受到时间和空间异质性以及个体相互作用的强烈影响。因此,最近提出的“可行性”概念框架[12]提出将个体有机体及其行为更好地整合到社区理论中,从而进行生物多样性研究。此外,对于生物多样性研究的另一个关键问题,物种组成如何因范围变化和入侵物种而改变,对运动,特别是传播的机械理解至关重要[22]。因此,来自宏观生态学的相关物种分布模型需要以种群动态和扩散的机械模型进行补充(例如,[19,30])。

实际上,越来越多的证据表明,影响生物多样性的许多机制是由生物运动介导的。运动既可以通过物种自身的活动模式直接促进多样性,也可以通过移动动物的移动链接功能间接促进多样性[13]。这包括运输种子,花粉,幼虫,真菌,细菌甚至成年生物的动物载体的重要作用。广泛讨论了影响生物多样性的与扩散有关的机制是质量效应,定居-竞争权衡和扩散限制[11]。此外,生物体的运动方式可以通过不太明显的方式严重影响社区的集会和物种共存,例如,减少时空异质环境中的开发竞争[14],加强对猎物的捕食者影响,[1],或以关键方式改变非生物条件[25]。尽管运动具有明显的相关性,但在生物多样性研究中仍普遍使用高度聚合的运动表示形式,例如分散核或空间利用模式,它们忽略了运动有机体实际上如何相互作用并在异质栖息地中导航。

生物多样性研究具有物种或种群的观点,而运动生态学具有个体生物的观点[11,22]。需要填补这一空白:无视个体及其行为会限制我们对生物多样性的了解。同样,仅关注运动过程本身,运动生态学对统一生态学理论的贡献可能比一般基于个体的方法所期望的要少[10]。

弥合生物多样性研究与运动生态学之间的差距是可能的。第一次整合表明,个人活动能力和策略对于确定零散景观中物种和群落的持久性,气候条件[27]或存在入侵物种[4]的持久性至关重要。同时,人类对自然的不断增加的危害使长期存在的运动方式处于危险之中,有机体运动在各个尺度上都发生了明显变化[6、8、26、29]。然而,运动生态学和生物多样性研究的全面整合仍处于起步阶段[11]。从经验上讲,我们需要进行更多的研究,不仅关注个人的移动,而且关注他们在移动时与环境和其他个人的相互作用,包括自己和其他物种。从理论的角度来看,缺乏将个体运动及其后果与人口和社区动态结合起来的建模方法[12]。

本专题系列旨在汇集研究,朝着迫切需要的运动生态学和生物多样性研究的融合迈出一步。它可以追溯到2018年9月在德国波茨坦举行的国际研讨会。该研讨会由“ BioMove”项目(“将生物多样性研究与动态农业景观中的运动生态相结合”,www.biomove.org组织)进行了生动生动的介绍。对120多个参与者的讨论创造了一种动力和精神,除其他外,导致了本主题系列的倡议。

对本专题系列的六份贡献中有三份直接涉及多种物种,因此也涉及生物多样性。Meyer等。[16]确定了九种大型森林栖居哺乳动物的活动通道,包括tap,鹿和野猪两种,美洲虎,美洲狮,豹猫和食蚁兽。后者以及唇唇白cc和cc被视为高度敏感的物种,而其他则被标记为“耐性”。比较了两种方法:基于摄像头陷阱数据的占用模型和基于GPS遥测数据的步进选择功能。两种方法对于耐受的物种都给出了相似的结果,但对于敏感的物种却没有。这是第一批描述走廊的运动生态学研究之一,它研究了整个物种。因此,关于保护的建议更加全面,正在更直接地解决生物多样性问题。越来越多的地理参考存在和移动数据将使将来其他物种和社区能够采用类似的方法。

Bielčik等。[2]回顾了迄今为止在运动生态学中已被广泛忽略的重要运动类型:丝状真菌中的菌丝介导运动。真菌生态学在诸如知情生长,菌丝易位或真菌高速公路等主题上的最新进展尚未与运动生态学的理论发展联系在一起。为了更好地整合真菌学和运动生态学,作者引入了“丝状真菌中的主动运动”的概念,该概念被定义为“生物体自身能源带来的环境中生物质的迁移”。

Schuppenhauer等。[23]探讨了土壤节肢动物,跳虫(Collembola)和苔藓螨(Oribatida)的被动运动,它们对于土壤提供的生态系统功能和服务起着关键作用。它们的活跃运动太有限,无法促进新土壤的定殖。以前已经研究了通过风,其他动物或海流进行的被动运动,但尚未针对自来水进行被动运动。通过野外和实验室实验,作者发现,在潜水生存和漂浮能力方面,苔藓螨的扩散能力很高,但也具有物种特异性。他们得出结论,自来水为许多这些土壤生物提供了重要而有效的分散高速公路。

对专题系列的其他三项贡献着重于单一物种的运动,但解决了与生物多样性研究高度相关的问题。Seidel等。[24]将纳米比亚黑犀牛的高分辨率运动数据链接到有关栖息地生产力的卫星数据。他们通过调查一天中不同尺度距离和每天更大距离的24小时位移模式估计了59个人的递归运动。对于中位数区域,短期递归最高,但生产率最高。犀牛在其家园范围内的同一区域内呆了几天,但也观察到了沿较大时间范围的递归,这可能有助于保持开阔的景观和稀树草原。

剩下的两个贡献涉及进化方面。Wolz等。[28]比较了在其核心种群(法国南部)和波罗的海国家中,捕食性黄蜂蜘蛛的分布和繁殖的特征,近几十年来该物种的范围不断扩大。问题是这种范围扩展是否与扩散的进化变化有关。情况并非如此,但是观察到了对冬季条件的扩散反应的差异,即在冬季条件与本地生境相匹配后,长距离运动的热气球增加,而在不匹配条件下的热气球减少。作者将这些差异解释为代际可塑性,而不是进化反应。

总理等。[18]探索在高度分散的景观中,景观结构和运动综合症(“害羞”与“大胆”)如何相互作用,以决定局部和区域的遗传多样性。他们以欧洲山猫为例,并在现有的基于个体的模型中添加了中性遗传标记。在矩阵栖息地中花费更多时间的“大胆”的分散者可以“保存”遗传多样性,因为它们更可能到达其他栖息地,但同时也降低了遗传多样性,因为作为以前无人居住的栖息地的创始人,他们可能会阻止建立其他基因型。另一方面,“害羞”的分散剂可保持渐进的遗传漂移。这些发现对重新引入和加强项目具有影响,该项目应考虑到不同动物性格所表现出的运动行为的多样性。

正如这些不同的贡献所表明的那样,可以从不同的角度来实现所要求的整合,从更加注重保护的重点到对物种相互作用和群落动态的更基础研究。我们欢迎自下而上和自上而下的方法,即将其设计和/或发现与生物多样性相关的运动研究,以及将其设计和/或发现与生物运动相关的生物多样性研究。在任何一种情况下,共同的线索是通过在共同的背景下带来运动和生物多样性动态来提供的。正如Jeltsch等人讨论和举例说明的那样。[11]和Schlägel等。[22],将运动生态学和生物多样性研究相结合具有挑战性,但也很有前途,它带来的见解无法帮助我们更好地理解,维持,维持生物多样性,

  1. 1。

    Avgar T,Giladi I,NathanR。将觅食动物的特征与植物的空间格局联系起来:社交和孤独的蚂蚁会产生相反的存活种子格局。Ecol Lett。2008; 11:224–34。

    文章Google学术搜索

  2. 2。

    BielčikM,CA Aguilar-Trigueros,Lakovic M,Jeltsch F,Rillig MC。主动运动在真菌生态学和社区聚集中的作用。电影 Ecol。2019; 7(1):36。https://doi.org/10.1186/s40462-019-0180-6。

  3. 3。

    布朗LM,富达RK,施蒂克泽尔N,科夫曼H,约斯特A,哈兹伯鲁克A,肯珀E,萨斯E,科隆E. 使用动物运动行为对土地覆盖进行分类,并预测连通性和补丁停留时间的后果。Landsc Ecol。2017; 32:1-14。

    文章Google学术搜索

  4. 4。

    Drygala F,Zoller H.入侵性子与中欧本地赤狐的空间利用和相互作用:竞争还是共存?Eur J Wildl水库。2013; 59:683–91。

    文章Google学术搜索

  5. 5,

    Fagan WF,Lewis MA,Auger-MéthéM,Avgar T,Benhamou S,Breed G,LaDage L,SchlägelUE,Tang W,Papastamatiou YP,Forester J,Mueller T.空间记忆和动物运动。Ecol Lett。2013; 16:1316–29。

    文章Google学术搜索

  6. 6。

    吉伯特JP,谢利尼MC,罗森塔尔MF,德隆JP。动物运动中温度依赖性的交叉机制。Glob Chang生物学。2016; 22:1722-36。

    文章Google学术搜索

  7. 7。

    González-VaroJP,Carvalho CS,Arroyo JM,JordanoP。通过零散的景观解散种子散播:节食动物作为移动链接的行为不均衡。摩尔·埃科尔。2017; 26:4309–21。

    文章Google学术搜索

  8. 8。

    Harris G,Thirgood S,Hopcraft JGC,Cromsigt JPGM,BergerJ。大型陆生哺乳动物的总体迁徙的全球下降。濒危物种资源 2009; 7:55–76。

    文章Google学术搜索

  9. 9。

    Hooten MB,Johnson DS,McClintock BT,Morales JM。动物运动:遥测数据的统计模型。博卡拉顿(Boca Raton):CRC新闻社/泰勒和弗朗西斯;2017。

  10. 10。

    Huston M,DeAngelis D,PostW。新的计算机模型统一了生态学理论。生物科学。1988; 38:682-91。

    文章Google学术搜索

  11. 11。

    Jeltsch F,Bonte D,Pe'er G,Reineking B,Leimgruber P,Balkenhol N,SchröderB,Buchmann CM,Mueller T,Blaum N,Zurell D,Böhning-GaeseK,Wiegand T,Eccard JA,Hofer H,Reeg J,Eggers U,Bauer S.将运动生态学与生物多样性研究相结合-探索解决时空生物多样性动态的新途径。Mov Ecol。2013; 1:6。https://doi.org/10.1186/2051-3933-1-6。

    文章PubMed PubMed Central Google学术搜索

  12. 12

    Jeltsch F,Grimm V,Reeg J,SchlägelUE。给机会一个机会:从共存到生物多样性理论中的可行性。生态圈。2019; 10:e02700

    文章Google学术搜索

  13. 13

    Lundberg J,MobergF。移动链接生物与生态系统功能:对生态系统复原力和管理的影响。生态系统。2003; 6:87-98。

    文章Google学术搜索

  14. 14。

    Macandza VA,Owen-Smith N,该隐JM III。非洲大草原中高草放牧者之间的动态空间划分和共存。Oikos。2012; 121:891–8。

    文章Google学术搜索

  15. 15

    Martin BT,Jager T,Nisbet RM,Preuss TG,GrimmV。根据个人属性预测人口动态:动态能量预算理论的跨层次检验。我是Nat。2013; 181:506–19。

    文章Google学术搜索

  16. 16。

    Meyer NF,Moreno R,Reyna-Hurtado R,Signer J,BalkenholN。为恢复巴拿马大型哺乳动物的中美洲生物走廊:将多种物种的占有率与运动模型进行比较。Mov Ecol。2020; 8(1):1-14。https://doi.org/10.1186/s40462-019-0186-0。

  17. 17。

    Nathan R,Getz WM,Revilla E,Holyoak M,Kadmon R,Saltz D,Smouse PE。统一有机体运动研究的运动生态学范式。美国国家科学院学报,2008; 105:19052–9。

    CAS文章Google学术搜索

  18. 18岁

    总理J,Fickel J,Heurich M,Kramer-SchadtS。大胆的恩惠与祸根:运动综合症是种群遗传多样性的救星和汇。Mov Ecol。2020; 8(16)。https://doi.org/10.1186/s40462-020-00204-y。

  19. 19

    Radchuk V,Kramer-Schadt S,GrimmV。机械生态模型的可传递性即将出现。趋势Ecol Evol。2019.https://doi.org/10.1016/j.tree.2019.01.010。

    文章Google学术搜索

  20. 20

    RailsS​​F,Harvey BC。特质介导的营养相互作用:觅食理论在跟上吗?趋势Ecol Evol。2013; 28:119–25。

    文章Google学术搜索

  21. 21

    RailsS​​F,Harvey BC。对适应性个体的种群建模。普林斯顿大学:普林斯顿大学。按; 2020年。216。

  22. 22

    SchlägelUE,Grimm V,Blaum N,Colangeli P,Dammhahn M,Eccard J,Hausmann S,Herde A,Hofer H,Joshi J,Kramer-Schadt S,Litwin M,Lozada-Gobilard SD,MüllerMEH,MüllerT,Nathan R,Petermann JS,Pirhofer-Walzl K,Radchuk V,Rillig MC,Roeleke M,SchäferM,Scherer C,Schiro G,Scholz C,Teckentrup L,Tiedemann R,Ullmann W,Voigt C,Weithoff G,Jeltsch F.介导的社区集会和共存。生物学评论2020年.https://doi.org/10.1111/brv.12600。

  23. 23。

    Schuppenhauer MM,Lehmitz R,Xylander WER。水上公路中缓慢移动的土壤生物:自来水和昆虫纲在自来水中的水生扩散和生存潜力。Mov Ecol。2020; 7(1):20。https://doi.org/10.1186/s40462-019-0165-5。

  24. 24

    Seidel DP,Linklater WL,Kilian W,du Preez P,Getz WM。纳米比亚黑犀牛的中尺度运动和递归行为。Mov Ecol。2019; 7(1):1-14。https://doi.org/10.1186/s40462-019-0176-2。

  25. 25岁

    Shantz AA,Ladd MC,Schrack E,Burkepile DE。来自鱼类的养分热点塑造了珊瑚礁底栖生物群落。Ecol应用 2015; 25:2142–52。

    文章Google学术搜索

  26. 26

    Tucker MA,Böhning-GaeseK,Fagan WF,Fryxell JM,Van Moorter B,Alberts SC等。人类世界的迁徙:陆地哺乳动物运动的全球减少。科学。2018; 359:466–9。

    CAS文章Google学术搜索

  27. 27。

    Wittwer T,O'Hara RB,Caplat P,Hickler T,Smith HG。迁徙鸟类的长期种群动态表明,气候变化和与栖息物种的竞争相互影响。Oikos。2015; 124:1151–9。

    文章Google学术搜索

  28. 28岁

    Wolz M,Klockmann M,Schmitz T,PekárS,Bonte D,Uhl G.在具有快速范围扩展的蜘蛛中的分散性和生活史特征。Mov Ecol。2020; 8(1):1-11。https://doi.org/10.1186/s40462-019-0182-4。

  29. 29。

    朱YG,吉林斯M,西蒙奈特P,斯特克尔D,班瓦尔特S,彭尼拉斯J.微生物群运动。科学。2017; 357:1099-100。

    CAS文章Google学术搜索

  30. 30岁

    Zurell D,Grimm V,Rossmanith E,Zbinden N,Zimmermann NE,SchröderB。范围动态预测的不确定性:瑞士阿尔卑斯山上的黑松鸡。生态垃圾 2012; 35:590–603。

    文章Google学术搜索

下载参考

作者非常感谢Deutsche Forschungsgemeinschaft在BioMove研究培训小组(DFG-GRK 2118/1)的支持下提供的支持。

隶属关系

  1. 波茨坦大学植物生态学与自然保护,德国波茨坦AmMühlenberg3,14476

    弗洛里安·耶尔奇(Florian Jeltsch)和沃尔克·格林(Volker Grimm)

  2. 亥姆霍兹环境研究中心(UFZ)生态模型系,德国莱比锡Permoserstr 15,04318

    沃尔克·格林

s
  1. Florian Jeltsch查看作者出版物

    您也可以在PubMed Google学术搜索中搜索该作者 

  2. Volker Grimm查看作者出版物

    您也可以在PubMed Google学术搜索中搜索该作者 

会费

作者阅读并批准了最终手稿。

通讯作者

对应于Florian Jeltsch。

利益争夺

作者宣称他们没有竞争利益。

发行人须知

对于已发布地图和机构隶属关系中的管辖权主张,Springer Nature保持中立。

开放存取本文是根据知识共享署名4.0国际许可许可的,该许可允许以任何媒介或格式使用,共享,改编,分发和复制,只要您对原始作者和出处提供适当的信誉,链接到知识共享许可,并指出是否进行了更改。本文的图像或其他第三方材料包含在该文章的知识共享许可中,除非在该材料的信用栏中另有说明。如果该材料未包含在该文章的创用CC许可中,并且您的预期用途未得到法律法规的许可或超出了许可的用途,则您需要直接获得版权所有者的许可。要查看此许可证的副本,请访问http://creativecommons.org/licenses/by/4.0/。

转载和许可

通过CrossMark验证货币和真实性

引用本文

Jeltsch,F.,Grimm,V.社论:主题系列“将运动生态学与生物多样性研究相结合”。MOV ECOL 8, 19(2020)。https://doi.org/10.1186/s40462-020-00210-0

下载引文

  • 收到

  • 已接受

  • 发表时间

  • DOI https //doi.org/10.1186/s40462-020-00210-0

更新日期:2020-07-24
down
wechat
bug