当前位置: X-MOL 学术Geochemistry, Geophys. Geosystems › 论文详情
Climate‐Driven Weathering Shifts Between Highlands and Floodplains
Geochemistry, Geophysics, Geosystems ( IF 3.275 ) Pub Date : 2020-06-09 , DOI: 10.1029/2020gc008936
Zhaojie Yu; Christophe Colin; Franck Bassinot; Shiming Wan; Germain Bayon

Chemical weathering of silicate rocks on continents is thought to have played an important role in the evolution of past atmospheric carbon dioxide over geologic timescales. However, the detailed links between continental weathering and climate change over shorter timescales, and their potential impact on sediment records deposited in the ocean, remain poorly understood. Here, we present clay mineralogy and strontium‐neodymium isotopic data for marine sediment records from the Northern Indian Ocean, with the aim of investigating the weathering response of large Himalayan river basins to orbital and millennial climate forcing. We show that past glaciated episodes of the late Quaternary corresponded to periods of increased physical erosion, associated with the preferential export of illite and chlorite assemblages from the Himalayan highlands having relatively radiogenic Sr isotopic signatures. In contrast, the warm periods of enhanced monsoon rainfall coincided with the transport of intensively weathered smectite‐dominated soils derived from the floodplains, characterized by lower 87Sr/86Sr signatures. This finding suggests that the short‐term climatic variability over late Quaternary timescales was accompanied by concomitant changes between high mountain‐ versus floodplain‐dominated weathering regimes, with possible impact on the nature of weathered rocks and, as a consequence, on the carbon cycle.
更新日期:2020-06-29

 

全部期刊列表>>
AI核心技术
10years
材料学研究精选
Springer Nature Live 产业与创新线上学术论坛
胸腔和胸部成像专题
自然科研论文编辑服务
ACS ES&T Engineering
ACS ES&T Water
屿渡论文,编辑服务
杨超勇
周一歌
华东师范大学
段炼
清华大学
廖矿标
李远
跟Nature、Science文章学绘图
隐藏1h前已浏览文章
中洪博元
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
x-mol收录
福州大学
南京大学
王杰
左智伟
电子显微学
何凤
洛杉矶分校
吴杰
赵延川
试剂库存
天合科研
down
wechat
bug