当前位置: X-MOL 学术Comp. Mater. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Systematic exploration of magnetic mechanism of La3Co29Si4B10 by first principles calculation
Computational Materials Science ( IF 3.3 ) Pub Date : 2020-11-01 , DOI: 10.1016/j.commatsci.2020.109853
Xiaoxu Wang , Haixia Cheng , Ye Su , Ping Qian

Abstract Rare earth transition metal compounds with intrinsic and high-performance magnetic behaviors have been attractively research topic as a promising permanent magnets material. In particularly, La3Co29Si4B10 is one of typically rare earth ferromagnetism materials with large magnetic moment and high transition temperature. In order to investigate the magnetic origin of sublattice and guide the design of permanent magnet materials with high magnetic moment and high magnetic crystalline anisotropy, we adopt first principles calculations method to investigate the magnetic mechanism of La3Co29Si4B10 combine local coordination environment with density of states. The results show that the magnetic moment mainly comes from the Co atom. According to the different local symmetry and atom hybridization, the Co atoms at different crystal positions can be divided into high spin state with maximum local magnetic moment at 2c position, low spin state with minimum magnetic moment at 8i1 position and medium spin state corresponding moderate magnetic moment size at other positions. Furthermore, the strain-stress of La3Co29Si4B10 will increase the total magnetic moment. Spin orbital coupling calculation indicate that the easy magnetization direction of La3Co29Si4B10 is along in plane with magnetic crystalline anisotropy energy of 0.68 meV/unit cell, which agreement with experimental. Our calculations lay a theoretical foundation for further experimental design of high-performance permanent magnet materials.

中文翻译:

第一性原理计算系统探索La3Co29Si4B10磁性机理

摘要 具有本征和高性能磁行为的稀土过渡金属化合物作为一种有前途的永磁材料一直是有吸引力的研究课题。特别是La3Co29Si4B10是典型的具有大磁矩和高转变温度的稀土铁磁性材料之一。为了研究亚晶格的磁性起源并指导高磁矩和高磁晶各向异性永磁材料的设计,我们采用第一性原理计算方法研究了La3Co29Si4B10结合局域配位环境和态密度的磁性机制。结果表明,磁矩主要来自Co原子。根据不同的局域对称性和原子杂化,不同晶位的Co原子可分为2c位置局部磁矩最大的高自旋态、8i1位置磁矩最小的低自旋态和其他位置对应中等磁矩大小的中等自旋态。此外,La3Co29Si4B10 的应变应力会增加总磁矩。自旋轨道耦合计算表明,La3Co29Si4B10的易磁化方向在平面内,磁晶各向异性能量为0.68 meV/晶胞,与实验一致。我们的计算为高性能永磁材料的进一步实验设计奠定了理论基础。在 8i1 位置具有最小磁矩的低自旋态和在其他位置对应中等磁矩大小的中自旋态。此外,La3Co29Si4B10 的应变应力会增加总磁矩。自旋轨道耦合计算表明,La3Co29Si4B10的易磁化方向在平面内,磁晶各向异性能量为0.68 meV/晶胞,与实验一致。我们的计算为高性能永磁材料的进一步实验设计奠定了理论基础。在 8i1 位置具有最小磁矩的低自旋态和在其他位置对应中等磁矩大小的中自旋态。此外,La3Co29Si4B10 的应变应力会增加总磁矩。自旋轨道耦合计算表明,La3Co29Si4B10的易磁化方向在平面内,磁晶各向异性能量为0.68 meV/晶胞,与实验一致。我们的计算为高性能永磁材料的进一步实验设计奠定了理论基础。自旋轨道耦合计算表明,La3Co29Si4B10的易磁化方向在平面内,磁晶各向异性能量为0.68 meV/晶胞,与实验一致。我们的计算为高性能永磁材料的进一步实验设计奠定了理论基础。自旋轨道耦合计算表明,La3Co29Si4B10的易磁化方向在平面内,磁晶各向异性能量为0.68 meV/晶胞,与实验一致。我们的计算为高性能永磁材料的进一步实验设计奠定了理论基础。
更新日期:2020-11-01
down
wechat
bug