当前位置: X-MOL 学术Nat. Catal. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Plasmon-driven carbon–fluorine (C( sp 3 )–F) bond activation with mechanistic insights into hot-carrier-mediated pathways
Nature Catalysis ( IF 37.8 ) Pub Date : 2020-06-08 , DOI: 10.1038/s41929-020-0466-5
Hossein Robatjazi , Junwei Lucas Bao , Ming Zhang , Linan Zhou , Phillip Christopher , Emily A. Carter , Peter Nordlander , Naomi J. Halas

The activation of carbon–fluorine bonds is an industrially and environmentally critical, but energetically challenging, transformation. Here we demonstrate a plasmonic photocatalysis approach to visible-light-driven hydrodefluorination that utilizes aluminium–palladium antenna–reactor heterostructures. Photocatalytic hydrodefluorination of aliphatic carbon–fluorine (C(sp3)–F) bonds in fluoromethane as a model molecule, in the presence of deuterium, results in the selective production of monodeuterated methane with a remarkable photocatalytic efficiency and stability. Analysis of the reaction kinetics reveals a reduction in the apparent reaction barrier and changes to the deuterium reaction order under illumination, which suggests a non-thermal contribution from photogenerated hot carriers to the reaction pathway. Using embedded correlated wavefunction methods, the ground- and excited-state energetics and the role of plasmon excitation in lowering the reaction barrier and modifying the kinetics under illumination are determined. Plasmon-mediated carbon–fluorine bond activation represents a promising potential for applications in high-value chemical transformations, as well as in abatement technologies for the mitigation of anthropogenic polyfluoroorganic compounds.



中文翻译:

等离子驱动的碳-氟(C(sp 3)-F)键活化与热载体介导途径的机械机理

碳-氟键的活化是工业和环境的关键,但在能源方面具有挑战性。在这里,我们演示了利用铝-钯天线-反应器异质结构的等离子光催化光催化方法进行加氢脱氟的方法。脂肪族碳氟的光催化加氢脱氟化(C(sp 3)–F)在氘存在下作为模型分子的氟甲烷中的键导致选择性产生单氘甲烷并具有显着的光催化效率和稳定性。反应动力学分析表明,在光照条件下,明显的反应势垒减少,氘反应顺序发生变化,这表明光生热载体对反应路径的非热贡献。使用嵌入的相关波函数方法,确定了基态和激发态的能量学以及等离激元激发在降低反应势垒和改变光照下的动力学中的作用。等离子体介导的碳-氟键活化代表了在高价值化学转化中的应用潜力,

更新日期:2020-06-08
down
wechat
bug