当前位置: X-MOL 学术Synth. Met. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Porous graphene oxide nanosheets warped by Ni(OH)2 platelets as an efficient binder-free electrode material for supercapacitors
Synthetic Metals ( IF 4.4 ) Pub Date : 2020-09-01 , DOI: 10.1016/j.synthmet.2020.116452
Yuting Zhou , Min Liu , Huayun Yang , Qi Liu , Weidong Li , Chun-Ming Yu

Abstract This article describes synthesis of the nickel hydroxide nanostructures (Ni(OH)2)@porous reduced graphene oxide (p-RGO) on 3-D nickel foam (NF) through a cost-effective one-step electrochemical strategy. This method composed of electrophoretic deposition of porous RGO plates and in situ formation of hydroxide nanostructures onto NF electrode. For comparison, the pristine Ni(OH)2/NF electrode was also fabricated via the similar method. The prepared nano-composite structure showed high surface area of 269.3 m2 g–1 with mesoporous texture and mean pore diameter of 3.58 nm, where the pure Ni hydroxide exhibited only surface area of 73.5 m2 g–1 and pore diameter of 2.75 nm. Both prepared samples were characterized via XRD, IR, FE-SEM, Raman, BET, TGA/DSC and TEM analyses. The nickel hydroxide@p-RGO composite deposited onto NF electrode has high specific capacitances as well as high electrical conductivity, where it delivered higher capacity of 1792 F g–1 at a current load of 2 A g–1 when compared with the Ni(OH)2 electrode (1175 F g–1 at the same current density), which nearly 65 % increment in capacity was observed. The composite material exhibited an outstanding capacity retention of ∼95.3 % and 87.6 % after 4000 cycles at the current densities of 1 and 7 A g–1, respectively. This methodology provides a feasible route for preparation of the metal hydroxide/graphene hybrid materials for electrochemical energy storage applications.

中文翻译:

由 Ni(OH)2 薄片翘曲的多孔氧化石墨烯纳米片作为用于超级电容器的高效无粘合剂电极材料

摘要 本文描述了通过经济高效的一步电化学策略在 3-D 泡沫镍 (NF) 上合成氢氧化镍纳米结构 (Ni(OH)2)@多孔还原氧化石墨烯 (p-RGO)。该方法包括多孔 RGO 板的电泳沉积和氢氧化物纳米结构在 NF 电极上的原位形成。为了比较,还通过类似的方法制造了原始的 Ni(OH)2/NF 电极。制备的纳米复合结构具有 269.3 m2 g-1 的高表面积,具有介孔结构和 3.58 nm 的平均孔径,其中纯氢氧化镍的表面积仅为 73.5 m2 g-1,孔径为 2.75 nm。两种制备的样品均通过 XRD、IR、FE-SEM、拉曼、BET、TGA/DSC 和 TEM 分析进行表征。沉积在 NF 电极上的氢氧化镍@p-RGO 复合材料具有高比电容和高电导率,与 Ni( OH)2 电极(在相同电流密度下为 1175 F g-1),观察到容量增加了近 65%。该复合材料在 1 和 7 A g-1 的电流密度下分别在 4000 次循环后表现出出色的容量保持率,分别为~95.3% 和 87.6%。该方法为制备用于电化学储能应用的金属氢氧化物/石墨烯杂化材料提供了可行的途径。与 Ni(OH)2 电极(相同电流密度下的 1175 F g-1)相比,它在 2 A g-1 的电流负载下提供了更高的 1792 F g-1 容量,增加了近 65%容量进行了观察。该复合材料在 1 和 7 A g-1 的电流密度下分别在 4000 次循环后表现出出色的容量保持率,分别为~95.3% 和 87.6%。该方法为制备用于电化学储能应用的金属氢氧化物/石墨烯杂化材料提供了可行的途径。与 Ni(OH)2 电极(相同电流密度下的 1175 F g-1)相比,它在 2 A g-1 的电流负载下提供了更高的 1792 F g-1 容量,增加了近 65%容量进行了观察。该复合材料在 1 和 7 A g-1 的电流密度下分别在 4000 次循环后表现出出色的容量保持率,分别为~95.3% 和 87.6%。该方法为制备用于电化学储能应用的金属氢氧化物/石墨烯杂化材料提供了可行的途径。
更新日期:2020-09-01
down
wechat
bug