当前位置: X-MOL 学术Comput. Geotech. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Mitigation of liquefaction-induced uplift of underground structures
Computers and Geotechnics ( IF 5.3 ) Pub Date : 2020-09-01 , DOI: 10.1016/j.compgeo.2020.103663
Ahmed O. Mahmoud , Mahmoud N. Hussien , Mourad Karray , Mohamed Chekired , Carole Bessette , Livius Jinga

Abstract Buoyancy is one of the most serious manifestations of underground structure’s instability during strong ground motions. Soil liquefaction along with significant reduction of its shear modulus beneath these structures are the main driving factors of this phenomenon. In this article, the seismic behavior of underground access structures embedded in sandy deposits was analyzed using the finite differences (FD) program (FLAC) with an emphasis on structural failures under real earthquakes. A new liquefaction model “energy-based approach” which simulates material cyclic behavior and estimates pore water pressure build-up, was incorporated into the numerical code as a constitutive model of the soil. Also, linear structural elements were used to model the underground structure. Several mitigation methods have been modelled against the structure flotation. As well as a new combined mitigation method and its impacts on the structural performance have been detailed herein. Numerical results showed that gravel drains would effectively dissipate the excess pore water pressure beneath the structure while increasing the burial depth of the structure and adding an impermeable layer under it would increase the vertical effective stress and therefore detracts the ability of excess pore water pressure to push the structure upward. It is found that compiling a gravel drains surround the structure with an impermeable layer beneath the structure would effectively reduce the structural uplift more than any other stand-alone method.

中文翻译:

减轻液化引起的地下结构抬升

摘要 浮力是地下结构在强烈地震动下失稳最严重的表现之一。土壤液化以及这些结构下其剪切模量的显着降低是这种现象的主要驱动因素。在本文中,使用有限差分 (FD) 程序 (FLAC) 分析了嵌入砂质沉积物中的地下通道结构的地震行为,重点是在真实地震下的结构破坏。一种新的液化模型“基于能量的方法”,它模拟材料循环行为并估计孔隙水压力的增加,被纳入数值代码作为土壤的本构模型。此外,线性结构元素用于模拟地下结构。已经针对结构浮选模拟了几种缓解方法。此外,本文还详细介绍了一种新的组合缓解方法及其对结构性能的影响。数值结果表明,砾石排水管可有效消散结构下方的超孔隙水压力,同时增加结构埋深并在其下增加防渗层会增加竖向有效应力,从而削弱超孔隙水推力结构向上。研究发现,在结构下方设置不透水层的砾石排水管环绕结构将比任何其他独立方法更有效地减少结构隆起。此外,本文还详细介绍了一种新的组合缓解方法及其对结构性能的影响。数值结果表明,砾石排水管可有效消散结构下方的超孔隙水压力,同时增加结构埋深,在其下增加防渗层会增加竖向有效应力,从而削弱超孔隙水压力的推动能力。结构向上。研究发现,在结构下方设置不透水层的砾石排水管环绕结构将比任何其他独立方法更有效地减少结构隆起。此外,本文还详细介绍了一种新的组合缓解方法及其对结构性能的影响。数值结果表明,砾石排水管可有效消散结构下方的超孔隙水压力,同时增加结构埋深,在其下增加防渗层会增加竖向有效应力,从而削弱超孔隙水压力的推动能力。结构向上。研究发现,在结构下方设置不透水层的砾石排水管环绕结构将比任何其他独立方法更有效地减少结构隆起。数值结果表明,砾石排水管可有效消散结构下方的超孔隙水压力,同时增加结构埋深,在其下增加防渗层会增加竖向有效应力,从而削弱超孔隙水压力的推动能力。结构向上。研究发现,在结构下方设置不透水层的砾石排水管环绕结构将比任何其他独立方法更有效地减少结构隆起。数值结果表明,砾石排水管可有效消散结构下方的超孔隙水压力,同时增加结构埋深,在其下增加防渗层会增加竖向有效应力,从而削弱超孔隙水压力的推动能力。结构向上。研究发现,在结构下方设置不透水层的砾石排水管环绕结构将比任何其他独立方法更有效地减少结构隆起。
更新日期:2020-09-01
down
wechat
bug