当前位置: X-MOL 学术J. Am. Chem. Soc. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Applying nanoparticle@MOF interface to activate an unconventional regioselectivity of an inert reaction at ambient conditions
Journal of the American Chemical Society ( IF 15.0 ) Pub Date : 2020-06-07 , DOI: 10.1021/jacs.0c04144
Hiang Kwee Lee 1 , Charlynn Sher Koh 1 , Wei-Shang Lo 2 , Yejing Liu 1 , In Yee Phang 3 , Howard Yi Sim 1 , Yih Hong Lee 1 , Gia Chuong Phan-Quang 1 , Xuemei Han 1 , Chia-Kuang Tsung 2 , Xing Yi Ling 1
Affiliation  

Here, we design an interface between a metal nanoparticle (NP) and a metal-organic framework (MOF) to activate an inert CO2 carboxylation reaction and in situ monitor its unconventional regioselectivity at the molecular level. Using a Kolbe-Schmitt reaction as model, our strategy exploits NP@MOF interface to create a pseudo high-pressure CO2 microenvironment over the phenolic substrate to drive its direct C-H carboxylation at ambient conditions. Conversely, Kolbe-Schmitt reactions usually demand high reaction temperature (>125 oC) and pressure (>80 atm). Notably, we observe an unprecedented CO2 meta-carboxylation of an arene that is previously deemed impossible in traditional Kolbe-Schmitt reactions. While the phenolic substrate in this study is fixed at NP@MOF interface to facilitate spectroscopic investigations, free reactants could be activated the same way by the local pressurized CO2 microenvironment. These valuable insights create enormous opportunities in diverse applications including synthetic chemistry, gas valorization and greenhouse gas remediation.

中文翻译:

应用纳米粒子@MOF 界面在环境条件下激活惰性反应的非常规区域选择性

在这里,我们设计了金属纳米颗粒 (NP) 和金属有机骨架 (MOF) 之间的界面,以激活惰性 CO2 羧化反应并在分子水平上原位监测其非常规区域选择性。使用 Kolbe-Schmitt 反应作为模型,我们的策略利用 NP@MOF 界面在酚类底物上创建伪高压 CO2 微环境,以在环境条件下驱动其直接 CH 羧化。相反,Kolbe-Schmitt 反应通常需要高反应温度 (>125 oC) 和压力 (>80 atm)。值得注意的是,我们观察到了前所未有的芳烃的 CO2 间羧化反应,这在传统的 Kolbe-Schmitt 反应中是不可能的。虽然本研究中的酚类底物固定在 NP@MOF 界面以方便光谱研究,局部加压的 CO2 微环境可以以同样的方式激活游离反应物。这些宝贵的见解在包括合成化学、气体增值和温室气体修复在内的各种应用中创造了巨大的机会。
更新日期:2020-06-07
down
wechat
bug