当前位置: X-MOL 学术Int. J. Multiphase Flow › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Numerical Simulations of Bubble Formation in Liquid Metal
International Journal of Multiphase Flow ( IF 3.8 ) Pub Date : 2020-10-01 , DOI: 10.1016/j.ijmultiphaseflow.2020.103363
H. Mirsandi , M.W. Baltussen , E.A.J.F. Peters , D.E.A. van Odyck , J. van Oord , D. van der Plas , J.A.M. Kuipers

Abstract The process of bubble formation from submerged orifices is encountered in various industrial applications. It is therefore essential to understand the dynamics of bubble formation under such conditions. In the present work, the process of bubble formation in a steel-argon system is studied using the Local Front Reconstruction Method (LFRM), a Front Tracking method that enables the simulation of interface merging and breakup. The numerical simulations are performed over a wide range of gas injection rates to study the bubble formation dynamics under quasi-static and dynamic regimes. The simulation results show that the detached bubbles in a steel-argon system are generally bigger compared to the bubbles detached in a water-air system due to higher surface tension and lower wettability. In liquid cross-flow, the bubble at the orifice mouth becomes asymmetric due to the drag force created by the liquid flow. Under non-wetting conditions, the bubble can slide over the orifice without forming a bubble neck when the orifice plate is sufficiently large. On the other hand, under wetting conditions, the detached bubble volume decreases when the orifice plate is gradually tilted from a horizontal to vertical orientation at lower shear rates. However, this trend reverses at higher shear rates because the drag force exerted by the flowing liquid becomes dominant.

中文翻译:

液态金属气泡形成的数值模拟

摘要 在各种工业应用中都会遇到从浸没孔口形成气泡的过程。因此,了解这种条件下气泡形成的动力学至关重要。在目前的工作中,使用局部前沿重建方法 (LFRM) 研究了钢 - 氩系统中气泡形成的过程,这是一种能够模拟界面合并和破裂的前沿跟踪方法。数值模拟是在很宽的注气速率范围内进行的,以研究准静态和动态状态下的气泡形成动力学。模拟结果表明,由于较高的表面张力和较低的润湿性,钢-氩系统中分离的气泡通常比水-空气系统中分离的气泡更大。在液体错流中,由于液体流动产生的阻力,孔口处的气泡变得不对称。在非润湿条件下,当孔板足够大时,气泡可以滑过孔而不会形成气泡颈。另一方面,在润湿条件下,当孔板在较低的剪切速率下逐渐从水平方向倾斜到垂直方向时,分离的气泡体积会减少。然而,这种趋势在更高的剪切速率下逆转,因为流动液体施加的阻力变得主导。当孔板在较低的剪切速率下从水平方向逐渐倾斜到垂直方向时,分离的气泡体积减小。然而,这种趋势在更高的剪切速率下逆转,因为流动液体施加的阻力变得主导。当孔板在较低的剪切速率下从水平方向逐渐倾斜到垂直方向时,分离的气泡体积减小。然而,这种趋势在更高的剪切速率下逆转,因为流动液体施加的阻力变得主导。
更新日期:2020-10-01
down
wechat
bug