当前位置: X-MOL 学术J. Mater. Chem. A › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Carrier transport composites with suppressed glass-transition for stable planar perovskite solar cells
Journal of Materials Chemistry A ( IF 11.9 ) Pub Date : 2020-06-05 , DOI: 10.1039/d0ta03376f
Ligang Wang 1, 2, 3, 4, 5 , Huanping Zhou 1, 2, 3, 4, 5 , Nengxu Li 1, 2, 3, 4, 5 , Yu Zhang 1, 2, 3, 4, 5 , Lihaokun Chen 1, 2, 3, 4, 5 , Xiaoxing Ke 6, 7, 8, 9 , Zhenxin Chen 6, 7, 8, 9 , Zelin Wang 6, 7, 8, 9 , Manling Sui 6, 7, 8, 9 , Yihua Chen 1, 2, 3, 4, 5 , Yuan Huang 1, 2, 3, 4, 5 , Liang Li 1, 2, 3, 4, 5 , Ziqi Xu 1, 2, 3, 4, 5 , Qi Chen 9, 10, 11, 12 , Ling-Dong Sun 1, 2, 3, 4, 5 , Chun-Hua Yan 1, 2, 3, 4, 5
Affiliation  

Poor stability is the most intractable factor undermining the confidence of academic and industry communities and impeding the commercialization of perovskite solar cells (PSCs). The mostly used small molecule transport materials in PSCs such as spiro-OMeTAD always suffer from undesired glass transition at relatively low temperatures. Glass transition would induce phase transition, crystallization and further physical deformation of the film and formation of a charge trap and short-circuited pathway that deteriorates the power conversion efficiency (PCE) of PSCs. To achieve stable and efficient PSCs, we propose a robust small molecule and polymer hole transport composite (SMPHTC), wherein a polymer is used as the skeleton, and small molecule materials as the crevice filler. In particular, we present a visualized method at the microscopic level to thoroughly understand the component spatial distribution of the SMPHTC, and its morphological evolution within the devices under thermal stress. Planar n–i–p structure PSCs based on this composite showed a PCE of 22.7% (reverse 23.3% and forward 22.0%) and a stable output of about 22.9%. Moreover, the obtained planar PSCs based on the SMPHTC showed obviously improved stability and preserved 90% of the original efficiency below 85 °C for 1000 h and 92% of the highest stabilized power output (SPO) after tracking for 560 h at room temperature without cooling. These results provide a deep understanding of low temperature glass transition suppression and suggest a general method for efficient and stable PSCs.

中文翻译:

抑制玻璃化转变的载流子传输复合材料,用于稳定的平面钙钛矿太阳能电池

稳定性差是最棘手的因素,会破坏学术界和行业界的信心,并阻碍钙钛矿太阳能电池(PSC)的商业化。PSC中最常用的小分子传输材料(例如spiro-OMeTAD)在相对较低的温度下始终遭受不良的玻璃化转变。玻璃化转变将引起薄膜的相变,结晶和进一步的物理变形,并形成电荷陷阱和短路路径,从而使PSC的功率转换效率(PCE)变差。为了获得稳定和有效的PSC,我们提出了一种坚固的小分子和聚合物空穴传输复合材料(SMPHTC),其中聚合物被用作骨架,小分子材料被用作缝隙填充物。尤其是,我们提供了一种在微观水平上的可视化方法,以彻底了解SMPHTC的组件空间分布及其在热应力下在设备内的形态演变。基于这种复合材料的平面n–i–p结构PSC显示出22.7%的PCE(反向23.3%和正向22.0%),稳定输出约为22.9%。此外,所获得的基于SMPHTC的平面PSC表现出明显的稳定性提高,并且在室温下跟踪560小时后,在85°C以下1000 h可以保持原始效率的90%,在最高稳态输出功率(SPO)的情况下保持92%。冷却。这些结果提供了对低温玻璃化转变抑制的深刻理解,并提出了有效而稳定的PSC的通用方法。及其在热应力作用下器件内部的形态演变。基于这种复合材料的平面n–i–p结构PSC显示出22.7%的PCE(反向23.3%和正向22.0%),稳定输出约为22.9%。此外,所获得的基于SMPHTC的平面PSC表现出明显的稳定性提高,并且在室温下跟踪560小时后,在85°C以下1000 h可以保持原始效率的90%,在最高稳态输出功率(SPO)的情况下保持92%。冷却。这些结果提供了对低温玻璃化转变抑制的深刻理解,并提出了有效而稳定的PSC的通用方法。及其在热应力作用下器件内部的形态演变。基于该复合材料的平面n–i–p结构PSC显示出22.7%的PCE(反向23.3%,正向22.0%),稳定输出约为22.9%。此外,所获得的基于SMPHTC的平面PSC表现出明显的稳定性提高,并且在室温下跟踪560小时后,在85°C以下1000 h可以保持原始效率的90%,在最高稳态输出功率(SPO)的情况下保持92%。冷却。这些结果提供了对低温玻璃化转变抑制的深刻理解,并提出了有效和稳定的PSC的通用方法。所获得的基于SMPHTC的平面PSC表现出明显的稳定性提高,并且在室温下跟踪560小时(不冷却)后,在85°C以下1000小时保持了原始效率的90%,在最高稳定功率输出(SPO)下保持了92%。这些结果提供了对低温玻璃化转变抑制的深刻理解,并提出了有效而稳定的PSC的通用方法。所获得的基于SMPHTC的平面PSC表现出明显的稳定性,并且在室温下跟踪560小时(不冷却)后,在85°C以下1000小时保持了原始效率的90%,在最高稳定功率输出(SPO)下保持92%。这些结果提供了对低温玻璃化转变抑制的深刻理解,并提出了有效而稳定的PSC的通用方法。
更新日期:2020-07-21
down
wechat
bug