当前位置: X-MOL 学术Appl. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Robust Control for Active Suspension of Hub-Driven Electric Vehicles Subject to in-Wheel Motor Magnetic Force Oscillation
Applied Sciences ( IF 2.838 ) Pub Date : 2020-06-05 , DOI: 10.3390/app10113929
Hang Wu , Ling Zheng , Yinong Li , Zhida Zhang , Yinghong Yu

In this paper, after investigating the coupling effect in a permanent magnet synchronous in-wheel motor, a robust control method for active suspension of hub-driven electric vehicles (EVs) to enhance the performance of the in-wheel motor and the vehicle is proposed. Based on the electric vehicle model addressing the coupling effect between the electromagnetic excitation of the permanent magnet synchronous motor (PMSM) and the transient dynamics in EVs, the influence of the coupling effect on the motor and the vehicle performance is analyzed. The results reflect that the coupling effect in in-wheel motors intensifies the magnetic force oscillation, aggravates the eccentricity of the rotor, deteriorates the motor operation performance, and worsens the ride comfort. To suppress the magnetic force oscillation in motor and enhance the vehicle comfort, the active suspension system considering five aspects of suspension performance is introduced. Simultaneously, on the basis of Lyapunov stability theory, a reliable robust Hꝏ controller considering model uncertainties, actuator failure and electromagnetic force interference is designed. The simulation results reflect that the robust Hꝏ feedback controller can not only achieve better ride comfort, but also restrain the coupling effect in the motor. Meanwhile the other requirements such as the road holding capability, the actuator limitation, and the suspension deflection are also maintained. The proposed robust control method demonstrates a potential application in the practice of EV control.

中文翻译:

受轮内电机磁力振荡影响的轮毂驱动电动汽车主动悬架的鲁棒控制

在本文中,在研究了永磁同步轮毂电机中的耦合效应后,提出了一种用于轮毂驱动电动汽车 (EV) 主动悬架的鲁棒控制方法,以提高轮毂电机和车辆的性能. 基于解决永磁同步电机(PMSM)电磁激励与电动汽车瞬态动力学耦合效应的电动汽车模型,分析了耦合效应对电机和整车性能的影响。结果表明轮毂电机中的耦合效应加剧了磁力振荡,加剧了转子的偏心,降低了电机运行性能,降低了平顺性。抑制电机磁力振荡,提高车辆舒适性,介绍了考虑悬架性能五个方面的主动悬架系统。同时,基于Lyapunov稳定性理论,设计了一种考虑模型不确定性、执行器失效和电磁力干扰的可靠鲁棒Hꝏ控制器。仿真结果表明,鲁棒的 Hꝏ 反馈控制器不仅可以实现更好的乘坐舒适性,还可以抑制电机中的耦合效应。同时,还保持了其他要求,例如道路保持能力、执行器限制和悬架挠度。所提出的鲁棒控制方法展示了在 EV 控制实践中的潜在应用。考虑模型不确定性、执行器故障和电磁力干扰,设计了一个可靠的鲁棒 Hꝏ 控制器。仿真结果表明,鲁棒的 Hꝏ 反馈控制器不仅可以实现更好的乘坐舒适性,还可以抑制电机中的耦合效应。同时,还保持了其他要求,例如道路保持能力、执行器限制和悬架挠度。所提出的鲁棒控制方法展示了在 EV 控制实践中的潜在应用。考虑到模型不确定性、执行器故障和电磁力干扰,设计了一个可靠的鲁棒 Hꝏ 控制器。仿真结果表明,鲁棒的 Hꝏ 反馈控制器不仅可以实现更好的乘坐舒适性,还可以抑制电机中的耦合效应。同时,还保持了其他要求,例如道路保持能力、执行器限制和悬架挠度。所提出的鲁棒控制方法展示了在 EV 控制实践中的潜在应用。同时,还保持了其他要求,例如道路保持能力、执行器限制和悬架挠度。所提出的鲁棒控制方法展示了在 EV 控制实践中的潜在应用。同时,还保持了其他要求,例如道路保持能力、执行器限制和悬架挠度。所提出的鲁棒控制方法展示了在 EV 控制实践中的潜在应用。
更新日期:2020-06-05
down
wechat
bug