Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Electrostatically doped drain engineered DG‐TFET: Proposal and analysis
International Journal of Numerical Modelling: Electronic Networks, Devices and Fields ( IF 1.6 ) Pub Date : 2020-06-04 , DOI: 10.1002/jnm.2769
Mohd Rizwan Uddin Shaikh 1 , Sajad A. Loan 1 , Abdullah Alshahrani 2
Affiliation  

In this paper, a drain‐engineered double‐gate Tunnel‐FET (DE‐DG‐TFET) to enhance the electrical characteristics and analog parameters of a conventional DG‐TFET is proposed and examined through calibrated TCAD simulations. Unlike DG‐TFET, a constant n‐type doping, Ncd, (5 × 1017 cm−3 − 2 × 1018 cm−3), in the channel/drain regions of DE‐DG‐TFET is used, resulting in a p+‐n‐n structure instead of conventional p+‐i‐n structure. Further, p+‐n‐n is modified to p+‐n‐n+ using electrostatic doping (ED) method on the drain side with Hafnium (ϕm = 3.9 eV) as a lateral (top and bottom) and side metal electrode. A high n+‐drain doping ensures the drain contact remains ohmic. Higher electric field at p+‐n source‐channel junction enhances the ON‐state BTBT current. While the absence of metallurgical junction provides large tunneling width across the channel/drain junction, resulting in suppression of ambipolar current (IAMB). At Ncd doping of 1 × 1018 cm−3, DE‐DG‐TFET demonstrates ~7 times increase in ION while IAMB is suppressed by ~5 orders of magnitude. In addition to this, the proposed device improves analog/RF figures of merit, 45% in voltage gain and ~5 times in peak fT.

中文翻译:

静电掺杂漏极设计的DG-TFET:建议和分析

本文提出了一种通过漏极设计的双栅极隧道FET(DE-DG-TFET)来增强常规DG-TFET的电气特性和模拟参数,并通过校准的TCAD仿真进行了研究。与DG-TFET不同的是,在DE-DG-TFET的沟道/漏极区中使用恒定的n型掺杂N cd(5×10 17  cm -3-2 ×10 18  cm -3),从而导致ap + -n -n结构,而不是传统的p + -i-n结构。此外,P + -n-n被改性至p + -n-n的+采用静电掺杂(ED)方法与铪漏极侧(ϕ m = 3.9 eV)作为侧面(顶部和底部)和侧面金属电极。高n +漏极掺杂确保漏极接触保持欧姆性。p + -n源沟道结处的较高电场会增强BTBT电流的导通状态。尽管没有冶金结,但在沟道/漏极结之间提供了较大的隧穿宽度,从而抑制了双极性电流(I AMB)。在N cd掺杂为1×10 18  cm -3时,DE‐DG‐TFET表现出I ON增加约7倍,而I AMB被抑制约5个数量级。除此之外,该器件还改善了模拟/ RF品质因数,电压增益提高了45%,峰值f T降低了约5倍。
更新日期:2020-06-04
down
wechat
bug