当前位置: X-MOL 学术Ultrasonics › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Thin Film Gallium Nitride (GaN) Based Acoustofluidic Tweezer: Modelling and Microparticle Manipulation
Ultrasonics ( IF 4.2 ) Pub Date : 2020-12-01 , DOI: 10.1016/j.ultras.2020.106202
Chao Sun 1 , Fangda Wu 2 , Yongqing Fu 3 , David J Wallis 4 , Roman Mikhaylov 2 , Fan Yuan 5 , Dongfang Liang 6 , Zhihua Xie 7 , Hanlin Wang 2 , Ran Tao 3 , Ming Hong Shen 8 , Jian Yang 8 , Wenpeng Xun 9 , Zhenlin Wu 10 , Zhiyong Yang 11 , Huaixing Cang 12 , Xin Yang 2
Affiliation  

Gallium nitride (GaN) is a compound semiconductor which shows advantages in new functionalities and applications due to its piezoelectric, optoelectronic, and piezo-resistive properties. This study develops a thin film GaN-based acoustic tweezer (GaNAT) using surface acoustic waves (SAWs) and demonstrates its acoustofluidic ability to pattern and manipulate microparticles. Although the piezoelectric performance of the GaNAT is compromised compared with conventional lithium niobate-based SAW devices, the inherited properties of GaN allow higher input powers and superior thermal stability. This study shows for the first time that thin film GaN is suitable for the fabrication of the acoustofluidic devices to manipulate microparticles with excellent performance. Numerical modelling of the acoustic pressure fields and the trajectories of mixtures of microparticles driven by the GaNAT was performed and the results were verified from the experimental studies using samples of polystyrene microspheres. The work has proved the robustness of thin film GaN as a candidate material to develop high-power acoustic tweezers, with the potential of monolithical integration with electronics to offer diverse microsystem applications.

中文翻译:

基于薄膜氮化镓 (GaN) 的声流体镊子:建模和微粒操作

氮化镓 (GaN) 是一种化合物半导体,由于其压电、光电和压阻特性,在新功能和应用中显示出优势。本研究开发了一种使用表面声波 (SAW) 的薄膜 GaN 基声学镊子 (GaNAT),并展示了其声流化能力来图案化和操纵微粒。尽管与传统的基于铌酸锂的 SAW 器件相比,GaNAT 的压电性能有所妥协,但 GaN 的继承特性允许更高的输入功率和卓越的热稳定性。该研究首次表明薄膜 GaN 适用于制造具有优异性能的声流体装置以操纵微粒。对声压场和由 GaNAT 驱动的微粒混合物的轨迹进行了数值模拟,并从使用聚苯乙烯微球样品的实验研究中验证了结果。这项工作证明了薄膜 GaN 作为开发高功率声镊的候选材料的稳健性,具有与电子设备单片集成以提供各种微系统应用的潜力。
更新日期:2020-12-01
down
wechat
bug