当前位置: X-MOL 学术Appl. Nanosci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Jeffery–Hamel flow of hybrid nanofluids in convergent and divergent channels with heat transfer characteristics
Applied Nanoscience ( IF 3.869 ) Pub Date : 2020-06-04 , DOI: 10.1007/s13204-020-01427-6
Muhammad Hafeez , Hashim , Masood Khan

Described in this article is a numerical study on the Jeffery–Hamel flow of hybrid fluid consisting of Copper and Graphene oxide nanoparticles. The nanofluid are considered as single-phase fluid and their heat transport performance is also investigated. The flow is carried out in a convergent/divergent channel where the channel walls can stretch or shrink. Additionally, the impact of magnetic field on flow and heat transfer analysis are examined. The flow governing equations are modeled under the Boussinesq approximations using cylindrical polar coordinates. These partial differential equations have been changed into system of ordinary differential equations by means of dimensionless formulation. Later, the numerical solution of governing problem is obtained with a developed code in MATLAB software which employs boundary-value problem solver (bvp4c). The effects of eminent flow parameters on skin friction coefficient, Nusselt number, velocity, and temperature distributions in case of both convergent and divergent channels are plotted and investigated. It is concluded from current analysis that the local skin friction coefficient significantly reduces with higher magnetic parameter. We further observed that the fluid velocity increases with increasing values of Reynolds number in case of convergent channel, while an inverse is noted for divergent channel. The present review indicates that the rate of heat transfer has been enhanced due to greater Prandtl number.



中文翻译:

Jeffery-Hamel混合纳米流体在具有传热特性的会聚和发散通道中的流动

本文描述的是对由铜和氧化石墨烯纳米粒子组成的混合流体的Jeffery-Hamel流动的数值研究。纳米流体被认为是单相流体,并且还研究了其传热性能。流动在收敛/发散的通道中进行,通道壁可以在其中伸展或收缩。此外,还检查了磁场对流动和传热分析的影响。流量控制方程使用圆柱极坐标在Boussinesq近似下建模。这些偏微分方程已经通过无量纲公式化为常微分方程组。后来,用MATLAB软件中使用边界值问题求解器(bvp4c)开发的代码获得了控制问题的数值解。绘制并研究了在汇流和发散通道情况下,突出流动参数对皮肤摩擦系数,努塞尔数,速度和温度分布的影响。从电流分析可以得出结论,局部皮肤摩擦系数随着磁参数的增加而显着降低。我们进一步观察到,在会聚通道的情况下,流体速度随雷诺数的增加而增加,而在发散通道中则观察到反比。本综述表明,由于更大的普朗特数,传热速率得到了提高。绘制并研究了收敛和发散通道情况下的速度和温度分布。从电流分析可以得出结论,局部皮肤摩擦系数随着较高的磁参数而显着降低。我们进一步观察到,在会聚通道的情况下,流体速度随雷诺数的增加而增加,而在发散通道中则观察到反比。本综述表明,由于更大的普朗特数,传热速率得到了提高。绘制并研究了收敛和发散通道情况下的速度和温度分布。从电流分析可以得出结论,局部皮肤摩擦系数随着较高的磁参数而显着降低。我们进一步观察到,在会聚通道的情况下,流体速度随雷诺数的增加而增加,而在发散通道中则观察到反比。本综述表明,由于更大的普朗特数,传热速率得到了提高。我们进一步观察到,在会聚通道的情况下,流体速度随着雷诺数的增加而增加,而在发散通道中则观察到反比。本综述表明,由于更大的普朗特数,传热速率得到了提高。我们进一步观察到,在会聚通道的情况下,流体速度随雷诺数的增加而增加,而在发散通道中则观察到反比。本综述表明,由于更大的普朗特数,传热速率得到了提高。

更新日期:2020-06-04
down
wechat
bug