当前位置: X-MOL 学术Acta. Mech. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Simulation of evaporation and propulsion of small particles in a laser beam
Acta Mechanica ( IF 2.7 ) Pub Date : 2020-03-17 , DOI: 10.1007/s00707-020-02651-5
O. B. Kovalev

The technique of numerical simulation of laser surface evaporation of small particles ranging in size from tens to several millimeters falling into the field of laser radiation is developed. The interaction of a laser beam with solid or liquid particles freely flying in a gas-dispersed stream is accompanied by heating and evaporation of the material, which occurs only from the irradiated part of the particle surface. The result is a reactive force created by the laser, which depends on the characteristics of the radiation and the physical properties of the particle material. The technique allows describing the pre-threshold, near-threshold and super-threshold modes of evaporation and is designed to calculate the light propulsion force due to the vapor recoil pressure arising from the irradiated part of the particle surface in the range of Mach numbers to unity. The Meshcherskii equation is used to simulate the reactive acceleration of particles. It is shown that, in the case of a pulsed laser effect, the theory is in good agreement with experimental data on reactive acceleration of aluminum, corundum, and graphite particles. A distinctive feature of the technique is the ability to calculate the gas dynamic parameters of steam and recoil pressure in a wide range of the power density of the absorbed laser radiation from 10 to 10,000 $$\hbox {GW}/\hbox {m}^{{2}}$$ GW / m 2 .

中文翻译:

模拟激光束中小颗粒的蒸发和推进

开发了落入激光辐射场的几十到几毫米的小颗粒的激光表面蒸发数值模拟技术。激光束与在气体分散流中自由飞行的固体或液体颗粒的相互作用伴随着材料的加热和蒸发,这仅发生在颗粒表面的辐照部分。结果是激光产生的反作用力,这取决于辐射的特性和粒子材料的物理特性。该技术允许描述阈值前,蒸发的近阈值和超阈值模式,旨在计算由于在马赫数到单位范围内粒子表面的辐照部分产生的蒸汽反冲压力引起的光推进力。Meshcherskii 方程用于模拟粒子的反应加速度。结果表明,在脉冲激光效应的情况下,该理论与铝、刚玉和石墨颗粒反应加速的实验数据非常吻合。该技术的一个显着特点是能够在从 10 到 10,000 $$\hbox {GW}/\hbox {m} 的很宽的吸收激光辐射功率密度范围内计算蒸汽和反冲压力的气体动态参数^{{2}}$$ GW / m 2 。Meshcherskii 方程用于模拟粒子的反应加速度。结果表明,在脉冲激光效应的情况下,该理论与铝、刚玉和石墨颗粒反应加速的实验数据非常吻合。该技术的一个显着特点是能够在从 10 到 10,000 $$\hbox {GW}/\hbox {m} 的很宽的吸收激光辐射功率密度范围内计算蒸汽和反冲压力的气体动态参数^{{2}}$$ GW / m 2 。Meshcherskii 方程用于模拟粒子的反应加速度。结果表明,在脉冲激光效应的情况下,该理论与铝、刚玉和石墨颗粒反应加速的实验数据非常吻合。该技术的一个显着特点是能够在从 10 到 10,000 $$\hbox {GW}/\hbox {m} 的很宽的吸收激光辐射功率密度范围内计算蒸汽和反冲压力的气体动态参数^{{2}}$$ GW / m 2 。
更新日期:2020-03-17
down
wechat
bug