当前位置: X-MOL 学术Mol. Brain › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Propionic acid induces dendritic spine loss by MAPK/ERK signaling and dysregulation of autophagic flux.
Molecular Brain ( IF 3.6 ) Pub Date : 2020-06-02 , DOI: 10.1186/s13041-020-00626-0
Hyosun Choi 1, 2 , In Sik Kim 1, 3 , Ji Young Mun 2
Affiliation  

Propionic acid (PPA) is a short-chain fatty acid that is an important mediator of cellular metabolism. It is also a by-product of human gut enterobacteria and a common food preservative. A recent study found that rats administered with PPA showed autistic-like behaviors like restricted interest, impaired social behavior, and impaired reversal in a T-maze task. This study aimed to identify a link between PPA and autism phenotypes facilitated by signaling mechanisms in hippocampal neurons. Findings indicated autism-like pathogenesis associated with reduced dendritic spines in PPA-treated hippocampal neurons. To uncover the mechanisms underlying this loss, we evaluated autophagic flux, a functional readout of autophagy, using relevant biomedical markers. Results indicated that autophagic flux is impaired in PPA-treated hippocampal neurons. At a molecular level, the mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) pathway was activated and autophagic activity was impaired. We also observed that a MAPK inhibitor rescued dendritic spine loss in PPA-treated hippocampal neurons. Taken together, these results suggest a previously unknown link between PPA and autophagy in spine formation regulation in hippocampal neurons via MAPK/ERK signaling. Our results indicate that MAPK/ERK signaling participates in autism pathogenesis by autophagy disruption affecting dendritic spine density. This study may help to elucidate other mechanisms underlying autism and provide a potential strategy for treating ASD-associated pathology.

中文翻译:

丙酸通过MAPK / ERK信号传导和自噬通量失调诱导树突状脊柱丢失。

丙酸(PPA)是一种短链脂肪酸,是细胞代谢的重要介质。它也是人肠道肠细菌的副产物和常见的食品防腐剂。最近的一项研究发现,服用PPA的大鼠在T型迷宫任务中表现出自闭症般的行为,如兴趣受限,社交行为受损和逆转受损。这项研究旨在确定海马神经元信号机制促进的PPA和自闭症表型之间的联系。研究结果表明,自闭症样发病机制与PPA治疗的海马神经元中树突棘减少有关。为了揭示这种损失的潜在机制,我们使用相关的生物医学标记物评估了自噬通量,即自噬的功能性读数。结果表明,在PPA处理的海马神经元中自噬通量受损。在分子水平上,有丝分裂原激活的蛋白激酶(MAPK)/细胞外信号调节激酶(ERK)途径被激活,自噬活性受损。我们还观察到,MAPK抑制剂可以挽救PPA治疗的海马神经元中的树突棘损失。两者合计,这些结果表明PPA和自噬之间通过MAPK / ERK信号在海马神经元的脊柱形成调节中存在以前未知的联系。我们的结果表明,MAPK / ERK信号传导通过影响树突棘密度的自噬破坏参与自闭症发病机制。这项研究可能有助于阐明自闭症的其他潜在机制,并提供治疗ASD相关病理的潜在策略。丝裂原活化蛋白激酶(MAPK)/细胞外信号调节激酶(ERK)通路被激活,自噬活性受损。我们还观察到,MAPK抑制剂可以挽救PPA治疗的海马神经元中的树突棘损失。两者合计,这些结果表明PPA和自噬之间通过MAPK / ERK信号在海马神经元的脊柱形成调节中存在以前未知的联系。我们的结果表明,MAPK / ERK信号传导通过影响树突棘密度的自噬破坏参与自闭症发病机制。这项研究可能有助于阐明自闭症的其他潜在机制,并提供治疗ASD相关病理的潜在策略。丝裂原活化蛋白激酶(MAPK)/细胞外信号调节激酶(ERK)通路被激活,自噬活性受损。我们还观察到,MAPK抑制剂可以挽救PPA治疗的海马神经元中的树突棘损失。两者合计,这些结果表明PPA和自噬之间通过MAPK / ERK信号在海马神经元的脊柱形成调节中存在以前未知的联系。我们的结果表明,MAPK / ERK信号传导通过影响树突棘密度的自噬破坏参与自闭症发病机制。这项研究可能有助于阐明自闭症的其他潜在机制,并提供治疗ASD相关病理的潜在策略。这些结果表明PPA和自噬之间通过MAPK / ERK信号在海马神经元的脊柱形成调节之间存在未知的联系。我们的结果表明,MAPK / ERK信号传导通过影响树突棘密度的自噬破坏参与自闭症发病机制。这项研究可能有助于阐明自闭症的其他潜在机制,并提供治疗ASD相关病理的潜在策略。这些结果表明PPA和自噬之间通过MAPK / ERK信号在海马神经元的脊柱形成调节之间存在未知的联系。我们的结果表明,MAPK / ERK信号传导通过影响树突棘密度的自噬破坏参与自闭症发病机制。这项研究可能有助于阐明自闭症的其他潜在机制,并提供治疗ASD相关病理的潜在策略。
更新日期:2020-06-02
down
wechat
bug