当前位置: X-MOL 学术Struct. Multidisc. Optim. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Design for additive manufacturing: 3D simultaneous topology and build orientation optimization
Structural and Multidisciplinary Optimization ( IF 3.9 ) Pub Date : 2020-06-02 , DOI: 10.1007/s00158-020-02590-8
Jack Olsen , Il Yong Kim

The primary driver for technological advancement in design methods is increasing part performance and reducing manufacturing cost. Design optimization tools, such as topology optimization, provide a mathematical approach to generate efficient and lightweight designs; however, integration of this design tool into industry has been hindered most notably by manufacturability. Innovative processes, such as additive manufacturing (AM), have significantly more design freedom than traditional manufacturing methods, providing a means to develop the complex designs produced by topology optimization. The layer-wise nature of AM leads to new design challenges such as the need for support material, influenced by part topology and build orientation. Previous works addressing approaches to limit support material often rely on the finite element discretization scheme, leading to a gap between solving academic and practical problems. This study presents an approach to simultaneously optimize part topology and build orientation with AM considerations. Utilizing the spatial density gradient in the topology optimization formulation, the dependence on the finite element discretization scheme is reduced. The proposed approach has the potential to significantly decrease support material, while having a minimal impact on structural performance. Both 2D and 3D academic test problems, as well as an aerospace industry example, demonstrate the proposed methodology is capable of generating high-quality designs.



中文翻译:

增材制造的设计:3D同时拓扑和构建方向优化

设计方法技术进步的主要动力是提高零件性能并降低制造成本。设计优化工具(例如拓扑优化)提供了一种数学方法来生成高效且轻巧的设计;但是,可制造性最明显地阻碍了将该设计工具集成到工业中。与传统制造方法相比,增材制造(AM)等创新过程具有更大的设计自由度,为开发通过拓扑优化产生的复杂设计提供了一种方法。AM的分层特性导致新的设计挑战,例如受零件拓扑和构建方向影响的支撑材料需求。解决限制材料的方法的先前工作通常依赖于有限元离散化方案,导致解决学术和实际问题之间存在差距。这项研究提出了一种方法,可以同时优化零件拓扑并根据AM考虑构建方向。利用拓扑优化公式中的空间密度梯度,减少了对有限元离散化方案的依赖。所提出的方法有可能显着减少支撑材料,同时对结构性能的影响最小。2D和3D学术测试问题以及航空航天业的例子都证明了所提出的方法能够生成高质量的设计。这项研究提出了一种方法,可以同时优化零件拓扑并根据AM考虑构建方向。利用拓扑优化公式中的空间密度梯度,减少了对有限元离散化方案的依赖。所提出的方法有可能显着减少支撑材料,同时对结构性能的影响最小。2D和3D学术测试问题以及航空航天业的例子都证明了所提出的方法能够生成高质量的设计。这项研究提出了一种方法,可以同时优化零件拓扑并根据AM考虑构建方向。利用拓扑优化公式中的空间密度梯度,减少了对有限元离散化方案的依赖。所提出的方法有可能显着减少支撑材料,同时对结构性能的影响最小。2D和3D学术测试问题以及航空航天业的例子都证明了所提出的方法能够生成高质量的设计。所提出的方法有可能显着减少支撑材料,同时对结构性能的影响最小。2D和3D学术测试问题以及航空航天业的例子都证明了所提出的方法能够生成高质量的设计。所提出的方法有可能显着减少支撑材料,同时对结构性能的影响最小。2D和3D学术测试问题以及航空航天业的例子都证明了所提出的方法能够生成高质量的设计。

更新日期:2020-06-02
down
wechat
bug