当前位置: X-MOL 学术Opt. Quant. Electron. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Effect of morphology of nanoparticles on performance of transparent display
Optical and Quantum Electronics ( IF 3 ) Pub Date : 2020-06-01 , DOI: 10.1007/s11082-020-02417-2
M. Seyyedi , A. Rostami , S. Matloub

Nanoparticles based transparent display is one of the most successful methods to realize transparent monitors. Also, an array of nanoparticles, especially aperiodic arrangements, plays an important role in this case. Normally, when one talks about nanoparticles, the spherical morphology appears in mind, in which it is possible to implement different morphology for nanoparticles. In this paper, six different classes of morphologies with various arrangements, such as periodic array and deterministic aperiodic arrays, have been investigated to propose a high-performance transparent display. We compare different morphologies of Si–SiO 2 nanoparticles at RGB (Red, Green, Blue) wavelengths in different types of arrays to find the highest scattering cross-section. Our calculations and figure of merit depending on the optical properties of nanoparticles, such as the resonance wavelength, the extinction, scattering and absorption cross-section, and the scattering to absorption ratio (SAR). We will show that in the proposed structures, there are suitable parameters to provide higher scattering cross-section as well as narrow bandwidth in which that is equivalent to introduce the maximum transparency and contrast ratio of transparent monitor. We use the Finite-Difference Time-Domain (FDTD) numerical method to simulate and calculate the deterministic aperiodic and periodic arrays of nanoparticles. Finally, we obtain the absorption and scattering cross-sections for six classes of nanoparticles: Cube, Sphere, Disk, Oblate ellipse, Prolate ellipse, and Pyramid into aperiodic and periodic arrays.

中文翻译:

纳米颗粒形貌对透明显示性能的影响

基于纳米粒子的透明显示器是实现透明显示器最成功的方法之一。此外,一系列纳米颗粒,尤其是非周期性排列,在这种情况下也起着重要作用。通常,当人们谈论纳米粒子时,会想到球形形态,其中可以为纳米粒子实现不同的形态。在本文中,研究了六种不同排列的形态,例如周期阵列和确定性非周期阵列,以提出高性能透明显示器。我们在不同类型的阵列中比较了 RGB(红、绿、蓝)波长下 Si-SiO 2 纳米颗粒的不同形态,以找到最高的散射截面。我们的计算和品质因数取决于纳米粒子的光学特性,例如共振波长、消光、散射和吸收截面,以及散射吸收比 (SAR)。我们将证明在所提出的结构中,有合适的参数来提供更高的散射截面以及窄带宽,这相当于引入了透明监视器的最大透明度和对比度。我们使用有限差分时域 (FDTD) 数值方法来模拟和计算纳米粒子的确定性非周期性和周期性阵列。最后,我们获得了六类纳米粒子的吸收和散射截面:立方体、球体、圆盘、扁椭圆、长椭圆和金字塔成非周期性和周期性阵列。和散射吸收比 (SAR)。我们将证明在所提出的结构中,有合适的参数来提供更高的散射截面以及窄带宽,这相当于引入了透明监视器的最大透明度和对比度。我们使用有限差分时域 (FDTD) 数值方法来模拟和计算纳米粒子的确定性非周期性和周期性阵列。最后,我们获得了六类纳米粒子的吸收和散射截面:立方体、球体、圆盘、扁椭圆、长椭圆和金字塔成非周期性和周期性阵列。和散射吸收比 (SAR)。我们将证明在所提出的结构中,有合适的参数来提供更高的散射截面以及窄带宽,这相当于引入了透明监视器的最大透明度和对比度。我们使用有限差分时域 (FDTD) 数值方法来模拟和计算纳米粒子的确定性非周期性和周期性阵列。最后,我们获得了六类纳米粒子的吸收和散射截面:立方体、球体、圆盘、扁椭圆、长椭圆和金字塔成非周期性和周期性阵列。有合适的参数可以提供更高的散射截面以及窄带宽,这相当于引入了透明显示器的最大透明度和对比度。我们使用有限差分时域 (FDTD) 数值方法来模拟和计算纳米粒子的确定性非周期性和周期性阵列。最后,我们获得了六类纳米粒子的吸收和散射截面:立方体、球体、圆盘、扁椭圆、长椭圆和金字塔成非周期性和周期性阵列。有合适的参数可以提供更高的散射截面以及窄带宽,这相当于引入了透明显示器的最大透明度和对比度。我们使用有限差分时域 (FDTD) 数值方法来模拟和计算纳米粒子的确定性非周期性和周期性阵列。最后,我们获得了六类纳米粒子的吸收和散射截面:立方体、球体、圆盘、扁椭圆、长椭圆和金字塔成非周期性和周期性阵列。
更新日期:2020-06-01
down
wechat
bug