当前位置: X-MOL 学术Int. J. Theor. Phys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Room Temperature High-fidelity Non-adiabatic Holonomic Quantum Computation on Solid-state Spins in Nitrogen-vacancy Centers
International Journal of Theoretical Physics ( IF 1.4 ) Pub Date : 2020-06-02 , DOI: 10.1007/s10773-020-04500-6
Guo-An Yan , Hua Lu

The high-speed implementation and robustness against of non-adiabatic holonomic quantum computation provide a new idea for overcoming the difficulty of the quantum system interacting with the environment easily decoherence, which realizing large-scale quantum computer construction. Here, we show that high-fidelity quantum gates to implement non-adiabatic holonomic quantum computation under electron spin states in Nitrogen-Vacancy( NV ) centers, providing an extensible experimental platform that has the potential for room-temperature quantum computing, which has increased attention recent years. Compared with the previous method, we can implement both the one- and two-qubit gates by varying the amplitude and phase of the microwave pulse applied to control the non-Abelian geometric phase acquired by NV centers. We also found that our proposed scheme may be implemented in the current experiment to discuss the gate fidelity with the experimental parameters. Therefore, the scheme adopts a new method to achieve high-fidelity non-adiabatic holonomic quantum computation.

中文翻译:

氮空位中心固态自旋的室温高保真非绝热完整量子计算

非绝热完整量子计算的高速实现和鲁棒性为克服量子系统与环境相互作用容易退相干的困难提供了新的思路,实现了大规模的量子计算机建设。在这里,我们展示了高保真量子门在氮空位(NV)中心的电子自旋态下实现非绝热完整量子计算,提供了一个具有室温量子计算潜力的可扩展实验平台,这增加了近年来关注。与之前的方法相比,我们可以通过改变施加的微波脉冲的幅度和相位来实现一个和两个量子位门,以控制 NV 中心获取的非阿贝尔几何相位。我们还发现我们提出的方案可以在当前的实验中实现,以讨论与实验参数的门保真度。因此,该方案采用了一种新的方法来实现高保真非绝热完整量子计算。
更新日期:2020-06-02
down
wechat
bug