当前位置: X-MOL 学术3D Print. Addit. Manuf. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Scalable Printing of Bionic Multiscale Channel Networks Through Digital Light Processing-Based Three-Dimensional Printing Process
3D Printing and Additive Manufacturing ( IF 3.1 ) Pub Date : 2020-06-05 , DOI: 10.1089/3dp.2020.0025
Yue Wang 1, 2 , Yancheng Wang 1, 3 , Deqing Mei 1, 3
Affiliation  

Digital light processing (DLP)-based printing process has been used to print microfeature-sized constructs and architectures for biomedical applications; the key challenge is to achieve both large printing size and high accuracy at the same time. Here we reported a scalable DLP-based three-dimensional (3D) printing system with scalable resolution and building size, which was used for printing of multiscale hydrogel fractal bionic channels. Scalable printing was achieved by moving the convex lens of the printing system, and thus, each single micromirror of the digital micromirror device chip corresponded to the single-pixel size scaling from 6 to12 μm. Using this system, we were able to use poly (ethylene glycol) diacrylate to fabricate a variety of multiscale architectures, such as regular fractal Y-shaped channels, and more irregular and intricate geometries, such as biomimetic capillary vascular networks. Blue and red food dye solutions were able to freely fill all these channels in the scaffolds, from the trunk (>1500 μm in width) to small branch (∼30 μm in width) by capillarity. Cell experiments were carried out to certify the biocompatibility of printed multiscale biomimetic channel networks. This work reveals significant progress in printing multiscale constructs with both large printing size and high precision in scalable DLP-based 3D printing.

中文翻译:

通过基于数字光处理的三维打印工艺可扩展打印仿生多尺度通道网络

基于数字光处理 (DLP) 的打印工艺已被用于打印用于生物医学应用的微型特征尺寸的构造和架构;关键的挑战是同时实现大打印尺寸和高精度。在这里,我们报告了一种可扩展的基于 DLP 的三维 (3D) 打印系统,该系统具有可扩展的分辨率和建筑尺寸,用于打印多尺度水凝胶分形仿生通道。可缩放打印是通过移动打印系统的凸透镜来实现的,因此,数字微镜器件芯片的每个单微镜对应于6至12μm的单像素尺寸缩放。使用这个系统,我们能够使用聚(乙二醇)二丙烯酸酯来制造各种多尺度架构,例如规则的分形 Y 形通道,以及更不规则和复杂的几何形状,例如仿生毛细血管网络。蓝色和红色食用染料溶液能够通过毛细管作用自由填充支架中的所有这些通道,从树干(>1500 μm 宽)到小树枝(~30 μm 宽)。进行细胞实验以证明印刷的多尺度仿生通道网络的生物相容性。这项工作揭示了在可扩展的基于 DLP 的 3D 打印中打印具有大打印尺寸和高精度的多尺度结构方面的重大进展。进行细胞实验以证明印刷的多尺度仿生通道网络的生物相容性。这项工作揭示了在可扩展的基于 DLP 的 3D 打印中打印具有大打印尺寸和高精度的多尺度结构方面的重大进展。进行细胞实验以证明印刷的多尺度仿生通道网络的生物相容性。这项工作揭示了在可扩展的基于 DLP 的 3D 打印中打印具有大打印尺寸和高精度的多尺度结构方面的重大进展。
更新日期:2020-06-05
down
wechat
bug