当前位置: X-MOL 学术J. Nanomater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Monodispersed LiFePO4@C Core-Shell Nanoparticles Anchored on 3D Carbon Cloth for High-Rate Performance Binder-Free Lithium Ion Battery Cathode
Journal of Nanomaterials ( IF 3.791 ) Pub Date : 2020-04-30 , DOI: 10.1155/2020/2607017
Boqiao Li 1 , Wei Zhao 2 , Chen Zhang 1 , Zhe Yang 1 , Fei Dang 1 , YiLun Liu 1 , Feng Jin 1 , Xi Chen 2, 3
Affiliation  

Owing to high safety, low cost, nontoxicity, and environment-friendly features, LiFePO4 that is served as the lithium ion battery cathode has attracted much attention. In this paper, a novel 3D LiFePO4@C core-shell configuration anchored on carbon cloth is synthesized by a facile impregnation sol-gel approach. Through the binder-free structure, the active materials can be directly combined with the current collector to avoid the falling of active materials and achieve the high-efficiency lithium ion and electron transfer. The traditional slurry-casting technique is applicable for pasting LiFePO4@C powders onto the 2D aluminum foil current collector (LFP-Al). By contrast, LFP-CC exhibits a reversible specific capacity of 140 mAh·g-1 and 93.3 mAh·g-1 at 1C and 10C, respectively. After 500 cycles, no obvious capacity decay can be observed at 10C while keeping the coulombic efficiency above 98%. Because of its excellent capacity, high-rate performance, stable electrochemical performance, and good flexibility, this material has great potentials of developing the next-generation high-rate performance lithium ion battery and preparing the binder-free flexible cathode.

中文翻译:

固定在3D碳布上的单分散LiFePO4 @ C核壳纳米粒子,用于高性能无粘结剂锂离子电池阴极

由于高安全性,低成本,无毒和环境友好的特性,用作锂离子电池正极的LiFePO 4备受关注。本文通过一种简便的浸渍溶胶-凝胶法合成了一种锚固在碳布上的新型3D LiFePO 4 @C核-壳构型。通过无粘合剂的结构,可以将活性材料与集电器直接结合,避免活性材料掉落并实现高效的锂离子和电子转移。传统的浆料浇铸技术适用于将LiFePO 4 @C粉末粘贴到二维铝箔集电器(LFP-Al)上。相比之下,LFP-CC的可逆比容量为140 mAh·g -1在1C和10C时分别为93.3 mAh·g -1和93.3 mAh·g -1。在500次循环之后,在保持库仑效率高于98%的同时,在10℃下没有观察到明显的容量衰减。由于其优异的容量,高倍率性能,稳定的电化学性能和良好的柔韧性,该材料具有开发下一代高倍率性能锂离子电池和制备无粘结剂柔性阴极的巨大潜力。
更新日期:2020-04-30
down
wechat
bug