当前位置: X-MOL 学术Langmuir › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Electrochemical Reduction-Assisted In Situ Fabrication of a Graphene/Au Nanoparticles@polyoxometalate Nanohybrid Film: High-Performance Electrochemical Detection for Uric Acid.
Langmuir ( IF 3.9 ) Pub Date : 2020-05-31 , DOI: 10.1021/acs.langmuir.0c00893
Yayan Bao 1, 2 , Zuopeng Li 2 , Haiyan Wang 2 , Ning Li 2 , Qiliang Pan 2 , Jiang Li 2 , Jianguo Zhao 2 , Ronghua Yang 3 , Feng Feng 1, 2
Affiliation  

Nanohybrid films had attracted much attention owning to the enhancement of catalytic activity. However, the fabrication time took hours to days, no matter if it was the preparation of nanohybrids or the assembly process. Furthermore, the catalytic efficiency of the nanohybrid film still remained to improve. In this paper, a reduced graphene oxide (rGO)/gold nanoparticles (Au NPs)@polyoxometalate (POM) nanohybrid film was successfully fabricated by combining electrodeposition and electrochemical reduction in situ processes. The assembly process involving no organic or polymer linker molecules [except for a precursor poly(ethylenimine) (PEI) coating for indium tin oxide (ITO)] can be completed within 1 h. The reduced POM K6[P2W18O62]·19H2O (P2W18) was employed as reducing agents and bridging molecules for rGO and Au nanoparticles and the encapsulating molecules for the Au nanoparticles. The most interesting one is the {rGO/Au@P2W18} modified electrode loading only the monolayer catalyst of Au@P2W18 and exhibiting comparable, even better electrochemical detection performance toward uric acid than other sensors with three to eight layers of the catalyst. The amperometric detection displayed a great sensitivity, lower detection limit, wide linear range, good long-time stability, superior selectivity, and reproducibility. The enhanced catalytic property may attribute to the improved conductivity of the film without organic or polymer linker molecules (except for a precursor PEI coating) and the electron transfer in the process of film fabrication.

中文翻译:

石墨烯/金纳米颗粒@多金属氧酸盐纳米杂化膜的电化学还原辅助原位制备:尿酸的高性能电化学检测。

纳米杂化膜由于其催化活性的提高而引起了广泛的关注。但是,无论是制备纳米杂化物还是组装过程,制造时间都需要数小时至数天。此外,纳米杂化膜的催化效率仍然有待提高。本文通过电沉积与原位电化学还原相结合的方法成功地制备了氧化石墨烯(rGO)/金纳米颗粒(Au NPs)@多金属氧酸盐(POM)纳米杂化膜。不涉及有机或聚合物接头分子的组装过程(除了用于铟锡氧化物(ITO)的前体聚(乙烯亚胺)(PEI)涂层外)可以在1小时内完成。降低的POM K 6 [P 2 W 18 O62 ]·19H 2 O(P 2 W 18)被用作rGO和Au纳米粒子的还原剂和桥连分子以及Au纳米粒子的包封分子。最有趣的是{rGO / Au @ P 2 W 18 }修饰电极,仅装载Au @ P 2 W 18单层催化剂与其他具有三到八层催化剂的传感器相比,它对尿酸的电化学检测性能相当,甚至更好。安培检测显示出高灵敏度,低检测限,宽线性范围,良好的长期稳定性,优异的选择性和可重复性。增强的催化性能可归因于没有有机或聚合物接头分子的膜(除了前体PEI涂层之外)的改进的电导率以及膜制造过程中的电子转移。
更新日期:2020-05-31
down
wechat
bug