当前位置: X-MOL 学术npj Comput. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Automated high-throughput Wannierisation
npj Computational Materials ( IF 9.7 ) Pub Date : 2020-06-01 , DOI: 10.1038/s41524-020-0312-y
Valerio Vitale , Giovanni Pizzi , Antimo Marrazzo , Jonathan R. Yates , Nicola Marzari , Arash A. Mostofi

Maximally-localised Wannier functions (MLWFs) are routinely used to compute from first-principles advanced materials properties that require very dense Brillouin zone integration and to build accurate tight-binding models for scale-bridging simulations. At the same time, high-throughput (HT) computational materials design is an emergent field that promises to accelerate reliable and cost-effective design and optimisation of new materials with target properties. The use of MLWFs in HT workflows has been hampered by the fact that generating MLWFs automatically and robustly without any user intervention and for arbitrary materials is, in general, very challenging. We address this problem directly by proposing a procedure for automatically generating MLWFs for HT frameworks. Our approach is based on the selected columns of the density matrix method and we present the details of its implementation in an AiiDA workflow. We apply our approach to a dataset of 200 bulk crystalline materials that span a wide structural and chemical space. We assess the quality of our MLWFs in terms of the accuracy of the band-structure interpolation that they provide as compared to the band-structure obtained via full first-principles calculations. Finally, we provide a downloadable virtual machine that can be used to reproduce the results of this paper, including all first-principles and atomistic simulations as well as the computational workflows.



中文翻译:

自动化的高通量万向化

通常使用最大局部化的Wannier函数(MLWF)从第一原理中计算高级材料特性,这些特性需要非常密集的布里渊区集成,并建立精确的紧密绑定模型以进行结桥仿真。同时,高通量(HT)计算材料设计是一个新兴领域,有望加速可靠且具有成本效益的设计以及对具有目标特性的新材料的优化。在HT工作流程中使用MLWF受到了以下事实的困扰:通常,在没有任何用户干预的情况下自动强大地生成MLWF以及对于任意材料来说都是非常具有挑战性的。我们通过提出一种为HT框架自动生成MLWF的过程来直接解决此问题。我们的方法基于密度矩阵方法的选定列,并且在AiiDA工作流程中介绍了其实现的详细信息。我们将我们的方法应用于涵盖了广泛的结构和化学空间的200种块状晶体材料的数据集。与通过完整的第一性原理计算获得的能带结构相比,我们根据其提供的能带结构插值的准确性来评估MLWF的质量。最后,我们提供了一个可下载的虚拟机,可用于重现本文的结果,包括所有第一原理和原子模拟以及计算工作流程。与通过完整的第一性原理计算获得的能带结构相比,我们根据其提供的能带结构插值的准确性来评估MLWF的质量。最后,我们提供了一个可下载的虚拟机,可用于重现本文的结果,包括所有第一原理和原子模拟以及计算工作流程。与通过完整的第一性原理计算获得的能带结构相比,我们根据其提供的能带结构插值的准确性来评估MLWF的质量。最后,我们提供了一个可下载的虚拟机,可用于重现本文的结果,包括所有第一原理和原子模拟以及计算工作流程。

更新日期:2020-06-01
down
wechat
bug