当前位置: X-MOL 学术Foods › 论文详情
Influence of Alkaline Treatment on Structural Modifications of Chlorophyll Pigments in NaOH-Treated Table Olives Preserved without Fermentation.
Foods ( IF 4.092 ) Pub Date : 2020-06-01 , DOI: 10.3390/foods9060701
Marta Berlanga-Del Pozo,Lourdes Gallardo-Guerrero,Beatriz Gandul-Rojas

Alkaline treatment is a key stage in the production of green table olives and its main aim is rapid debittering of the fruit. Its action is complex, with structural changes in both the skin and the pulp, and loss of bioactive components in addition to the bitter glycoside oleuropein. One of the components seriously affected are chlorophylls, which are located mainly in the skin of the fresh fruit. Chlorophyll pigments are responsible for the highly-valued green color typical of table olive specialties not preserved by fermentation. Subsequently, the effect on chlorophylls of nine processes, differentiated by NaOH concentration and/or treatment time, after one year of fruit preservation under refrigeration conditions, was investigated. A direct relationship was found between the intensity of the alkali treatment and the degree of chlorophyll degradation, with losses of more than 60% being recorded when NaOH concentration of 4% or greater were used. Oxidation with opening of the isocyclic ring was the main structural change, followed by pheophytinization and degradation to colorless products. To a lesser extent, decarbomethoxylation and dephytylation reactions were detected. An increase in NaOH from 2% to 5% reduced the treatment time from 7 to 4 h, but fostered greater formation of allomerized derivatives, and caused a significant decrease in the chlorophyll content of the olives. However, NaOH concentrations between 6% and 10% did not lead to further time reductions, which remained at 3 h, nor to a significant increase in oxidized compounds, though the proportion of isochlorin e4-type derivatives was modified. Chlorophyll compounds of series b were more prone to oxidation and degradation reactions to colorless products than those of series a. However, the latter showed a higher degree of pheophytinization, and, exclusively, decarbomethoxylation and dephytylation reactions.
更新日期:2020-06-01

 

全部期刊列表>>
AI核心技术
10years
材料学研究精选
Springer Nature Live 产业与创新线上学术论坛
胸腔和胸部成像专题
自然科研论文编辑服务
ACS ES&T Engineering
ACS ES&T Water
屿渡论文,编辑服务
杨超勇
周一歌
华东师范大学
段炼
清华大学
廖矿标
李远
跟Nature、Science文章学绘图
隐藏1h前已浏览文章
中洪博元
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
x-mol收录
福州大学
南京大学
王杰
左智伟
电子显微学
何凤
洛杉矶分校
吴杰
赵延川
试剂库存
天合科研
down
wechat
bug