当前位置: X-MOL 学术Atmosphere › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The Influence of Graphene Oxide on Nanoparticle Emissions during Drilling of Graphene/Epoxy Carbon-Fiber Reinforced Engineered Nanomaterials
Atmosphere ( IF 2.9 ) Pub Date : 2020-06-01 , DOI: 10.3390/atmos11060573
Kristof Starost , James Njuguna

Graphene oxide (GO) nanoparticles are increasingly being used to tailor industrial composites. However, despite the advantages, GO has shown conceivable health risks and toxicity to humans and the environment if released. This study investigates the influence that GO concentrations have on nanoparticle emissions from epoxy-reinforced carbon fiber hybrid composites (EP/CF) during a lifecycle scenario, that is, a drilling process. The mechanical properties are investigated and an automated drilling methodology in which the background noise is eliminated is used for the nanoparticle emissions measurements. Real-time measurements are collected using a condensation particle counter (CPC), a scanning mobility particle sizer spectrometer (SMPS), a real-time fast mobility particle spectrometer (DMS50) and post-test analytical methods. The results observe that all three nanoparticle reinforced samples demonstrated a statistically significant difference of up to a 243% increase in mean peak particle number concentration in comparison to the EP/CF sample. The results offer a novel set of data comparing the nanoparticle release of GO with varying filler weight concentration and correlating it the mechanical influence of the fillers. The results show that the release characteristics and the influence in particle number concentration are primarily dependent on the matrix brittleness and not necessarily the filler weight concentration within the nanocomposite.

中文翻译:

石墨烯/环氧碳纤维增强工程纳米材料钻孔过程中氧化石墨烯对纳米颗粒排放的影响

氧化石墨烯(GO)纳米颗粒正越来越多地用于定制工业复合材料。但是,尽管具有这些优点,但GO释放出可能对人类和环境产生健康风险和毒性。这项研究调查了在生命周期场景(即钻孔过程)中,GO浓度对环氧增强碳纤维混合复合材料(EP / CF)的纳米颗粒排放的影响。研究了机械性能,并且使用了消除背景噪声的自动钻孔方法进行了纳米颗粒排放的测量。使用冷凝粒子计数器(CPC),扫描迁移率粒度分析仪(SMPS),实时快速迁移率粒子光谱仪(DMS50)和测试后分析方法来收集实时测量值。结果观察到,与EP / CF样品相比,所有三个纳米颗粒增强样品均显示出统计学上的显着差异,即平均峰值颗粒数浓度最多增加243%。结果提供了一组新颖的数据,将GO的纳米颗粒释放与变化的填料重量浓度进行了比较,并将其与填料的机械影响相关联。结果表明,释放特性和颗粒数量浓度的影响主要取决于基质的脆性,而不必取决于纳米复合材料中填料的重量浓度。结果提供了一组新颖的数据,将GO的纳米颗粒释放与变化的填料重量浓度进行了比较,并将其与填料的机械影响相关联。结果表明,释放特性和颗粒数量浓度的影响主要取决于基质的脆性,而不必取决于纳米复合材料中填料的重量浓度。结果提供了一组新颖的数据,将GO的纳米颗粒释放与变化的填料重量浓度进行了比较,并将其与填料的机械影响相关联。结果表明,释放特性和颗粒数量浓度的影响主要取决于基质的脆性,而不必取决于纳米复合材料中填料的重量浓度。
更新日期:2020-06-01
down
wechat
bug