当前位置: X-MOL 学术Comput. Commun. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Artificial intelligence driven wireless network remote monitoring based on Diffie–Hellman parameter method
Computer Communications ( IF 6 ) Pub Date : 2020-06-01 , DOI: 10.1016/j.comcom.2020.05.047
Junyan Zhou

Remote monitoring of wireless networks based on artificial intelligence can build sensitive anomaly recognition mechanisms, automated event analysis engines and accurate global operation and maintenance capabilities for wireless network defense. Firstly, a simple camera is used to realize real-time acquisition and wireless transmission of video signals based on software-based MPEG-4 compression coding method. The self-developed ActiveX control with video decoding function is embedded in the webpage to realize real-time dynamic display of video information in the computer browser of the monitoring terminal. Secondly, in order to realize the intelligent control of wireless network, the research based on the reverse motion degree posture planning is carried out. The DH parameter method is used to establish the linkage coordinate system of wireless network remote monitoring, and the kinematics formula is derived. The geometric analysis method is used to calculate the motion trajectory of remote monitoring, accurately locate the various angles of remote monitoring and obtain the best motion path. Based on the Pm angle control method of fuzzy neural network, the RBF neural network, fuzzy control the combination of control and Pm control, using the self-learning ability of the neural network and the fuzzy reasoning is ability of fuzzy control. The end effector was adjusted to the target position. Finally, the established mathematical model was simulated by MATLAB, and the characteristics of wireless network remote monitoring were verified.



中文翻译:

基于Diffie–Hellman参数法的人工智能驱动的无线网络远程监控

基于人工智能的无线网络远程监控可以建立敏感的异常识别机制,自动事件分析引擎以及用于无线网络防御的准确的全局操作和维护功能。首先,基于基于软件的MPEG-4压缩编码方法,使用一个简单的摄像机来实现视频信号的实时采集和无线传输。网页中嵌入了自行开发的具有视频解码功能的ActiveX控件,可实现在监控终端的计算机浏览器中实时动态显示视频信息。其次,为了实现无线网络的智能控制,进行了基于反向运动姿态规划的研究。利用DH参数法建立无线网络远程监控的联动坐标系,并推导出运动学公式。几何分析方法用于计算远程监控的运动轨迹,准确定位远程监控的各个角度,以获得最佳的运动路径。基于模糊神经网络的Pm角控制方法,采用RBF神经网络,将模糊控制与Pm控制相结合,利用神经网络的自学习能力和模糊推理能力进行模糊控制。将末端执行器调整到目标位置。最后,通过MATLAB对建立的数学模型进行仿真,验证了无线网络远程监控的特点。几何分析方法用于计算远程监控的运动轨迹,准确定位远程监控的各个角度,以获得最佳的运动路径。基于模糊神经网络的Pm角控制方法,采用RBF神经网络,将模糊控制与Pm控制相结合,利用神经网络的自学习能力和模糊推理能力进行模糊控制。将末端执行器调整到目标位置。最后,通过MATLAB对建立的数学模型进行仿真,验证了无线网络远程监控的特点。几何分析方法用于计算远程监控的运动轨迹,准确定位远程监控的各个角度,以获得最佳的运动路径。基于模糊神经网络的Pm角控制方法,采用RBF神经网络,将模糊控制与Pm控制相结合,利用神经网络的自学习能力和模糊推理能力进行模糊控制。将末端执行器调整到目标位置。最后,通过MATLAB对建立的数学模型进行仿真,验证了无线网络远程监控的特点。基于模糊神经网络的Pm角控制方法,采用RBF神经网络,将模糊控制与Pm控制相结合,利用神经网络的自学习能力和模糊推理能力进行模糊控制。将末端执行器调整到目标位置。最后,通过MATLAB对建立的数学模型进行仿真,验证了无线网络远程监控的特点。基于模糊神经网络的Pm角控制方法,采用RBF神经网络,将模糊控制与Pm控制相结合,利用神经网络的自学习能力和模糊推理能力进行模糊控制。将末端执行器调整到目标位置。最后,通过MATLAB对建立的数学模型进行仿真,验证了无线网络远程监控的特点。

更新日期:2020-06-01
down
wechat
bug