当前位置: X-MOL 学术bioRxiv. Evol. Biol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Photoreceptor complexity accompanies adaptation to challenging marine environments in Anthozoa
bioRxiv - Evolutionary Biology Pub Date : 2020-05-30 , DOI: 10.1101/2020.05.28.118018
Sebastian G. Gornik , B. Gideon Bergheim , Nicholas S. Foulkes , Annika Guse

Light represents a key environmental factor, which shapes the physiology and evolution of most organisms. Notable illustrations of this are reef-building corals (Anthozoa), which adapted to shallow, oligotrophic, tropical oceans by exploiting light from the sun and the moon to regulate various aspects of physiology including sexual reproduction, phototaxis and photosymbiosis. Together with the Medusozoa, (including jellyfish), the Anthozoa constitute the ancestral metazoan phylum cnidaria. While light perception in Medusozoa has received attention, the mechanisms of light sensing in Anthozoa remain largely unknown. Cnidaria express two principle groups of light-sensing proteins: opsins and photolyases/cryptochromes. By inspecting the genomic loci encoding these photoreceptors in over 35 cnidarian species, we reveal that Anthozoa have substantially expanded and diversified their photoreceptor repertoire. We confirm that, in contrast to Medusozoa, which retained one opsin class, anthozoans possess all three urmetazoan opsin classes. We show that anthozoans also evolved an extra sub-group (actinarian ASO-IIs). Strikingly, we reveal that cryptochromes including CRY-IIs are absent in Medusozoa, while the Anthozoa retained these and evolved an additional, novel cryptochrome class (AnthoCRYs), which contain unique tandem duplications of up to 6 copies of the PHR region. We explored the functionality of these photoreceptor groups by structure-function and gene expression analysis in the anthozoan model species Exaiptasia pallida (Aiptasia), which recapitulates key photo-behaviors of corals. We identified an array of features that we speculate reflect adaptations to shallow aquatic environments, moonlight-induced spawning synchronization and photosymbiosis. We further propose that photoreceptor complexity and diversity in Anthozoa reflects adaptation to challenging habitats.

中文翻译:

感光体的复杂性伴随着对拟南芥海洋环境的挑战

光线代表了一个关键的环境因素,它决定着大多数生物的生理和进化。值得注意的例子是造礁珊瑚(Anthozoa),它利用太阳和月亮的光来调节生理的各个方面,包括有性生殖,趋光性和光共生,从而适应了浅层,贫营养的热带海洋。与Medusozoa(包括水母)一起,Anthozoa构成了祖先后生门cnidaria。尽管Medusozoa中的光感知受到关注,但在Anthozoa中的光感知机制仍是未知的。矢车菊表达两种主要的感光蛋白:视蛋白和光裂解酶/隐色素。通过检查超过35种刺胞动物物种中编码这些感光器的基因座,我们发现,Anthozoa已大大扩展和多样化了其感光受体库。我们确认,与保留一种视蛋白类别的美杜莎相反,花青虫拥有所有的三种urmetazoan视蛋白类别。我们表明,花虫也进化出一个额外的亚群(actinarian ASO-IIs)。令人惊讶的是,我们揭示了Medusozoa中不存在包括CRY-IIs在内的隐色染料,而Anthozoa保留了这些隐色染料,并进化出了另一种新颖的隐色染料类(AnthoCRYs),其中包含多达6个PHR区域的独特串联重复。我们通过结构功能和基因表达分析在人类模型动物中探索了这些感光基团的功能。疟原虫具有所有三种urmetazoan视蛋白类。我们表明,花虫也进化出一个额外的亚群(actinarian ASO-IIs)。令人惊讶的是,我们发现Medusozoa中不存在包括CRY-IIs在内的隐色染料,而Anthozoa保留了这些隐色染料,并进化出了另一种新颖的隐色染料类(AnthoCRYs),其中包含多达6个PHR区域的独特串联重复。我们通过结构功能和基因表达分析在人类模型动物中探索了这些感光基团的功能。疟原虫具有所有三种urmetazoan视蛋白类。我们表明,花虫也进化出一个额外的亚群(actinarian ASO-IIs)。令人惊讶的是,我们发现Medusozoa中不存在包括CRY-IIs在内的隐色染料,而Anthozoa保留了这些隐色染料,并进化出了另一种新颖的隐色染料类(AnthoCRYs),其中包含多达6个PHR区域的独特串联重复。我们通过结构功能和基因表达分析在人类模型动物中探索了这些感光基团的功能。其中包含最多6个PHR区域的唯一串联重复项。我们通过结构功能和基因表达分析在人类模型动物中探索了这些感光基团的功能。其中包含最多6个PHR区域的唯一串联重复项。我们通过结构功能和基因表达分析在人类模型动物中探索了这些感光基团的功能。Exaiptasia pallidaAiptasia),概述了珊瑚的主要摄影行为。我们确定了一系列功能,我们推测这些功能反映了对浅水环境的适应性,月光诱导的产卵同步和光合。我们进一步提出,花蝇的光感受器复杂性和多样性反映了其对具有挑战性的栖息地的适应性。
更新日期:2020-05-30
down
wechat
bug