当前位置: X-MOL 学术J. Laser Appl. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Laser welding components for electric vehicles with a high-power blue laser system
Journal of Laser Applications ( IF 2.1 ) Pub Date : 2020-05-01 , DOI: 10.2351/7.0000054
M. S. Zediker 1 , R. D. Fritz 1 , M. J. Finuf 1 , J. M. Pelaprat 1
Affiliation  

Welding copper to itself and other metals is challenging using conventional welding techniques. The process window for welding copper with an infrared (IR) laser, resistance welder, or an ultrasonic welder is very narrow. In the case of the infrared laser, the high reflectivity at these wavelengths makes it difficult to couple the power into the material and control the temperature of the weld puddle. In the case of ultrasonic and resistive welding, the high thermal conductivity of the material and the tendency to create particles cause less than ideal welds. These fundamental problems can be overcome by using a laser with a wavelength that is highly absorbed by these materials. This paper will present recent welding results using a fiber coupled 500-W blue laser system coupled to a welding head to deliver a 215 μm spot size and an average power density of 1.6 MW/cm2. These results will be compared with the authors’ previous results from a free space delivered laser system that was the prototype for the 500-W fiber coupled laser. The fiber coupled laser system performance exceeded the free space performance because of two factors: (1) the welding was able to be performed at normal incidence (90°) to the surface allowing for greater power coupling into the copper and (2) a smaller spot size with a higher power density was used (1.6 MW/cm2 vs 398 kW/cm2). Tests on welding battery components, including stacks of foils, buss bars, hairpins (for motors), and other components, with no porosity and no spatter will be covered. Both copper and mixed metals welding results will be presented. Tests have also been performed with 1 kW of laser power from a processing head with a 400 μm spot size and an average power density of 800 kW/cm2. Both systems have enough power density to initiate the keyhole welding process in copper, stainless steel, and aluminum. The difference in welding speeds for these two systems will be compared in this paper.

中文翻译:

具有高功率蓝色激光系统的电动汽车激光焊接部件

使用传统的焊接技术将铜焊接到自身和其他金属上具有挑战性。使用红外 (IR) 激光、电阻焊机或超声波焊机焊接铜的工艺窗口非常狭窄。在红外激光的情况下,这些波长的高反射率使得难以将功率耦合到材料中并控制熔池的温度。在超声波焊接和电阻焊接的情况下,材料的高导热性和产生颗粒的倾向会导致不太理想的焊接。这些基本问题可以通过使用波长被这些材料高度吸收的激光来克服。本文将介绍使用光纤耦合 500-W 蓝色激光系统耦合到焊头以提供 215 μm 光斑尺寸和 1.6 MW/cm2 平均功率密度的最新焊接结果。这些结果将与作者之前从自由空间传送激光系统中获得的结果进行比较,该系统是 500-W 光纤耦合激光器的原型。由于两个因素,光纤耦合激光系统的性能超过了自由空间性能:(1) 焊接能够在垂直入射 (90°) 的表面进行,允许更大的功率耦合到铜中;(2) 较小的使用具有更高功率密度的光斑尺寸(1.6 MW/cm2 vs 398 kW/cm2)。焊接电池组件的测试,包括成堆的箔、汇流条、发夹(用于电机)和其他组件,没有孔隙和飞溅将被覆盖。将介绍铜和混合金属焊接结果。还使用来自加工头的 1 kW 激光功率进行了测试,该加工头具有 400 μm 光斑尺寸和 800 kW/cm2 的平均功率密度。两种系统都有足够的功率密度来启动铜、不锈钢和铝的锁眼焊接工艺。本文将比较这两种系统的焊接速度差异。
更新日期:2020-05-01
down
wechat
bug