当前位置: X-MOL 学术Phys. Status Solidi. Rapid Res. Lett. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Probing Charge Transport and Background Doping in Metal‐Organic Chemical Vapor Deposition‐Grown (010) β‐Ga2O3
Physica Status Solidi-Rapid Research Letters ( IF 2.8 ) Pub Date : 2020-06-08 , DOI: 10.1002/pssr.202000145
Zixuan Feng 1 , A F M Anhar Uddin Bhuiyan 1 , Zhanbo Xia 1 , Wyatt Moore 1 , Zhaoying Chen 1 , Joe F. McGlone 1 , David R. Daughton 2 , Aaron R. Arehart 1 , Steven A. Ringel 1, 3 , Siddharth Rajan 1, 3 , Hongping Zhao 1, 3
Affiliation  

A new record‐high room‐temperature electron Hall mobility (μRT = 194 cm2 V−1 s−1 at n ≈ 8 × 1015 cm−3) for β‐Ga2O3 is demonstrated in the unintentionally doped thin film grown on (010) semi‐insulating substrate via metal‐organic chemical vapor deposition (MOCVD). A peak electron mobility of ≈9500 cm2 V−1 s−1 is achieved at 45 K. Further investigation on the transport properties indicates the existence of sheet charges near the epilayer/substrate interface. Si is identified as the primary contributor to the background carrier in both the epilayer and the interface, originating from both surface contamination and growth environment. The pregrowth hydrofluoric acid cleaning of the substrate leads to an obvious decrease in Si impurity both at the interface and in the epilayer. In addition, the effect of the MOCVD growth condition, particularly the chamber pressure, on the Si impurity incorporation is studied. A positive correlation between the background charge concentration and the MOCVD growth pressure is confirmed. It is noteworthy that in a β‐Ga2O3 film with very low bulk charge concentration, even a reduced sheet charge density plays an important role in the charge transport properties.

中文翻译:

在金属有机化学气相沉积生长(010)β-Ga2O3中探测电荷传输和背景掺杂

新的记录高的室温电子霍尔迁移率(μ RT  =194厘米2  V -1 小号-1Ñ  ≈8×10 15 厘米-3),用于的β-Ga 2 ö 3演示了非故意掺杂薄膜通过金属有机化学气相沉积(MOCVD)在(010)半绝缘衬底上生长。峰值电子迁移率约为9500 cm 2  V -1  s -1在45 K时达到了最大吸收速率。对传输特性的进一步研究表明,在外延层/基底界面附近存在薄层电荷。Si被认为是外延层和界面中背景载体的主要贡献者,其源于表面污染和生长环境。基板的预生长氢氟酸清洗可导致界面和外延层中的Si杂质明显减少。另外,研究了MOCVD生长条件,特别是腔室压力对Si杂质掺入的影响。证实了背景电荷浓度与MOCVD生长压力之间的正相关。值得注意的是,在一个的β-Ga 2 ö 3 具有极低总电荷浓度的薄膜,甚至降低的片电荷密度在电荷传输性能中也起着重要作用。
更新日期:2020-06-08
down
wechat
bug