当前位置: X-MOL 学术Theor. Appl. Climatol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Determining future thunderstorm-prone environments in Southern Ontario by using statistical downscaling to project changes in convective available potential energy (CAPE)
Theoretical and Applied Climatology ( IF 3.4 ) Pub Date : 2020-05-28 , DOI: 10.1007/s00704-020-03260-x
Steven M. Huryn , Tanzina Mohsin , William A. Gough , Ken Butler

Considering the potential risks associated with thunderstorms, to date, there has been limited analysis on the projection of thunderstorm occurrence trends in Canada. The small spatial and temporal scales of thunderstorms are not resolved in global climate models (GCMs). In this study, the relationship is established between thunderstorm observations from nine weather stations across Southern Ontario, Canada, and daily maximum convective available potential energy (CAPE). The results from the correlation analysis between CAPE and thunderstorm days suggested that the probability of observing a thunderstorm increases as maximum daily CAPE increases. We then utilize the novel approach of applying statistical downscaling (SDSM) to CAPE. After regenerating CAPE over a 30-year reference period (1981–2010) at each weather station, it was determined that the SDSM-modeled CAPE values well compared to observed CAPE values. Future CAPE values up to the end of the current century are then projected using the SDSM models for each station in combination with three GCMs for future climate. The forecast from the downscaling suggested large increases, as much as tripling, in annual mean CAPE, summer mean CAPE, and number of days exceeding a 50% probability and 80% probability of observing a thunderstorm at all weather stations under SRES business-as-usual and RCP 8.5 scenarios for the study period of 2011–2100. All else being equal, this suggests an increase in the number of days with conditions favorable for thunderstorms under a warmer climate.



中文翻译:

通过使用统计缩减规模来预测对流可用势能(CAPE)的变化,确定安大略省南部未来可能发生雷暴的环境

考虑到与雷暴有关的潜在风险,迄今为止,对加拿大雷暴发生趋势的预测分析有限。全球气候模型(GCM)无法解决雷暴的小时空尺度问题。在这项研究中,建立在加拿大安大略省南部9个气象站的雷暴观测与每日最大对流可用势能(CAPE)之间的关系。CAPE和雷暴日之间的相关性分析结果表明,随着每日最大CAPE的增加,观测雷暴的可能性也随之增加。然后,我们利用将统计缩减(SDSM)应用于CAPE的新颖方法。在每个气象站的30年参考期内(1981-2010年)重新生成CAPE之后,已确定与观察到的CAPE值相比,SDSM模型化的CAPE值良好。然后,使用每个站点的SDSM模型结合三个GCM来预测到本世纪末的未来CAPE值,以结合未来气候。降级后的预测表明,在SRES运营模式下,所有气象站的年平均CAPE,夏季平均CAPE以及在所有气象站观测雷暴的天数超过50%和80%的天数将增加三倍之多。 2011–2100研究期的常规和RCP 8.5方案。在所有其他条件相同的情况下,这表明在温暖的气候下,有利于雷暴天气的天数增加。然后,使用每个站点的SDSM模型结合三个GCM来预测到本世纪末的未来CAPE值,以结合未来气候。降级后的预测表明,在SRES运营模式下,所有气象站的年平均CAPE,夏季平均CAPE以及在所有气象站观测雷暴的天数超过50%和80%的天数将增加三倍之多。 2011–2100研究期的常规和RCP 8.5方案。在所有其他条件相同的情况下,这表明在温暖的气候下,有利于雷暴天气的天数增加。然后,使用每个站点的SDSM模型结合三个GCM来预测到本世纪末的未来CAPE值,以结合未来气候。降级后的预测表明,在SRES运营模式下,所有气象站的年平均CAPE,夏季平均CAPE以及在所有气象站观测雷暴的天数超过50%和80%的天数将增加三倍之多。 2011–2100研究期的常规和RCP 8.5方案。在所有其他条件相同的情况下,这表明在温暖的气候下,有利于雷暴天气的天数增加。在2011–2100年研究期间,按照SRES照常运行和RCP 8.5情景,在所有气象站观测到雷暴的概率均超过50%和80%的天数。在所有其他条件相同的情况下,这表明在温暖的气候下,有利于雷暴天气的天数增加。在2011–2100年研究期间,按照SRES照常运行和RCP 8.5情景,在所有气象站观测到雷暴的概率均超过50%和80%的天数。在所有其他条件相同的情况下,这表明在温暖的气候下,有利于雷暴天气的天数增加。

更新日期:2020-05-28
down
wechat
bug