当前位置: X-MOL 学术Nanoscale Adv. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Exploration of mechanical, thermal conductivity and electromechanical properties of graphene nanoribbon springs
Nanoscale Advances ( IF 4.7 ) Pub Date : 2020-05-28 , DOI: 10.1039/d0na00217h
Brahmanandam Javvaji 1 , Bohayra Mortazavi 1 , Timon Rabczuk 2, 3 , Xiaoying Zhuang 4, 5
Affiliation  

Recent experimental advances [Liu et al., npj 2D Mater. Appl., 2019, 3, 23] propose the design of graphene nanoribbon springs (GNRSs) to substantially enhance the stretchability of pristine graphene. A GNRS is a periodic undulating graphene nanoribbon, where undulations are of sinus or half-circle or horseshoe shapes. Besides this, the GNRS geometry depends on design parameters, like the pitch's length and amplitude, thickness and joining angle. Because of the fact that parametric influence on the resulting physical properties is expensive and complicated to examine experimentally, we explore the mechanical, thermal and electromechanical properties of GNRSs using molecular dynamics simulations. Our results demonstrate that the horseshoe shape design GNRS (GNRH) can distinctly outperform the graphene kirigami design concerning the stretchability. The thermal conductivity of GNRSs was also examined by developing a multiscale modeling, which suggests that the thermal transport along these nanostructures can be effectively tuned. We found that however, the tensile stretching of the GNRS and GNRH does not yield any piezoelectric polarization. The bending induced hybridization change results in a flexoelectric polarization, where the corresponding flexoelectric coefficient is 25% higher than that of graphene. Our results provide a comprehensive vision of the critical physical properties of GNRSs and may help to employ the outstanding physics of graphene to design novel stretchable nanodevices.

中文翻译:

石墨烯纳米带弹簧的机械、导热和机电性能探索

最近的实验进展[刘等人。, npj 2D 母校。应用程序。, 2019, 3, 23] 提出了石墨烯纳米带弹簧 (GNRS) 的设计,以显着增强原始石墨烯的拉伸性。GNRS 是周期性波动的石墨烯纳米带,其中的波动呈正弦形或半圆形或马蹄形。除此之外,GNRS 几何形状取决于设计参数,例如间距的长度和幅度、厚度和连接角度。由于参数对最终物理特性的影响昂贵且实验检查复杂,因此我们使用分子动力学模拟探索 GNRS 的机械、热和机电特性。我们的结果表明,马蹄形设计 GNRS (GNRH) 在拉伸性方面可以明显优于石墨烯剪纸设计。还通过开发多尺度模型检查了 GNRS 的热导率,这表明沿这些纳米结构的热传输可以得到有效调整。然而,我们发现,GNRS 和 GNRH 的拉伸拉伸不会产生任何压电极化。弯曲引起的杂化变化导致挠曲电极化,其中相应的挠曲电系数比石墨烯高 25%。我们的结果提供了对 GNRS 关键物理特性的全面了解,并可能有助于利用石墨烯的出色物理特性来设计新型可拉伸纳米器件。GNRS 和 GNRH 的拉伸拉伸不会产生任何压电极化。弯曲引起的杂化变化导致挠曲电极化,其中相应的挠曲电系数比石墨烯高 25%。我们的结果提供了对 GNRS 关键物理特性的全面了解,并可能有助于利用石墨烯的出色物理特性来设计新型可拉伸纳米器件。GNRS 和 GNRH 的拉伸拉伸不会产生任何压电极化。弯曲引起的杂化变化导致挠曲电极化,其中相应的挠曲电系数比石墨烯高 25%。我们的结果提供了对 GNRS 关键物理特性的全面了解,并可能有助于利用石墨烯的出色物理特性来设计新型可拉伸纳米器件。
更新日期:2020-05-28
down
wechat
bug