当前位置: X-MOL 学术Appl. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Nonionic Surfactant to Enhance the Performances of Alkaline–Surfactant–Polymer Flooding with a Low Salinity Constraint
Applied Sciences ( IF 2.838 ) Pub Date : 2020-05-28 , DOI: 10.3390/app10113752
Shabrina Sri Riswati , Wisup Bae , Changhyup Park , Asep K. Permadi , Adi Novriansyah

This paper presents a nonionic surfactant in the anionic surfactant pair (ternary mixture) that influences the hydrophobicity of the alkaline–surfactant–polymer (ASP) slug within low-salinity formation water, an environment that constrains optimal designs of the salinity gradient and phase types. The hydrophobicity effectively reduced the optimum salinity, but achieving as much by mixing various surfactants has been challenging. We conducted a phase behavior test and a coreflooding test, and the results prove the effectiveness of the nonionic surfactant in enlarging the chemical applicability by making ASP flooding more hydrophobic. The proposed ASP mixture consisted of 0.2 wt% sodium carbonate, 0.25 wt% anionic surfactant pair, and 0.2 wt% nonionic surfactant, and 0.15 wt% hydrolyzed polyacrylamide. The nonionic surfactant decreased the optimum salinity to 1.1 wt% NaCl compared to the 1.7 wt% NaCl of the reference case with heavy alcohol present instead of the nonionic surfactant. The coreflooding test confirmed the field applicability of the nonionic surfactant by recovering more oil, with the proposed scheme producing up to 74% of residual oil after extensive waterflooding compared to 51% of cumulative oil recovery with the reference case. The nonionic surfactant led to a Winsor type III microemulsion with a 0.85 pore volume while the reference case had a 0.50 pore volume. The nonionic surfactant made ASP flooding more hydrophobic, maintained a separate phase of the surfactant between the oil and aqueous phases to achieve ultra-low interfacial tension, and recovered the oil effectively.

中文翻译:

非离子表面活性剂可提高盐度低的碱性-表面活性剂-聚合物驱性能

本文提出了一种阴离子表面活性剂对(三元混合物)中的非离子表面活性剂,它会影响低盐度地层水中碱性-表面活性剂-聚合物(ASP)块的疏水性,该环境限制了盐度梯度和相类型的最佳设计。疏水性有效地降低了最佳盐度,但是通过混合各种表面活性剂来实现最大的盐分具有挑战性。我们进行了相行为测试和岩心驱替测试,结果证明了非离子表面活性剂通过使ASP驱替更具疏水性来扩大化学适用性是有效的。所提出的ASP混合物由0.2重量%的碳酸钠,0.25重量%的阴离子表面活性剂对和0.2重量%的非离子表面活性剂和0.15重量%的水解聚丙烯酰胺组成。与存在重醇而不是非离子表面活性剂的参考案例中的1.7 wt%NaCl相比,非离子表面活性剂将最佳盐度降低至1.1 wt%NaCl。岩心驱替测试通过回收更多的油证实了非离子表面活性剂的现场适用性,该方案在大量注水后可产生高达74%的残留油,而参考案例的累积采出率为51%。非离子表面活性剂导致Winsor III型微乳液的孔体积为0.85,而参考案例的孔体积为0.50。非离子表面活性剂使ASP驱油更具疏水性,使表面活性剂在油相和水相之间保持分离状态,以实现超低界面张力,并有效地回收了油。参考情况的7 wt%NaCl含有重醇,而不是非离子表面活性剂。岩心驱替测试通过回收更多的油证实了非离子表面活性剂的现场适用性,该方案在大量注水后可产生高达74%的残留油,而参考案例的累积采出率为51%。非离子表面活性剂导致Winsor III型微乳液的孔体积为0.85,而参考案例的孔体积为0.50。非离子表面活性剂使ASP驱油更具疏水性,使表面活性剂在油相和水相之间保持分离状态,以实现超低界面张力,并有效地回收了油。参考情况的7 wt%NaCl含有重醇,而不是非离子表面活性剂。岩心驱替测试通过回收更多的油证实了非离子表面活性剂的现场适用性,该方案在大量注水后可产生高达74%的残留油,而参考案例的累积采出率为51%。非离子表面活性剂导致Winsor III型微乳液的孔体积为0.85,而参考案例的孔体积为0.50。非离子表面活性剂使ASP驱油更具疏水性,使表面活性剂在油相和水相之间保持分离状态,以实现超低界面张力,并有效地回收了油。岩心驱替测试通过回收更多的油证实了非离子表面活性剂的现场适用性,该方案在大量注水后可产生高达74%的残留油,而参考案例的累积采出率为51%。非离子表面活性剂导致Winsor III型微乳液的孔体积为0.85,而参考案例的孔体积为0.50。非离子表面活性剂使ASP驱油更具疏水性,使表面活性剂在油相和水相之间保持分离状态,以实现超低界面张力,并有效地回收了油。岩心驱替测试通过回收更多的油证实了非离子表面活性剂的现场适用性,该方案在大量注水后可产生高达74%的残留油,而参考案例的累积采出率为51%。非离子表面活性剂导致Winsor III型微乳液的孔体积为0.85,而参考案例的孔体积为0.50。非离子表面活性剂使ASP驱油更具疏水性,使表面活性剂在油相和水相之间保持分离状态,以实现超低界面张力,并有效地回收了油。非离子表面活性剂导致Winsor III型微乳液的孔体积为0.85,而参考案例的孔体积为0.50。非离子表面活性剂使ASP驱油更具疏水性,使表面活性剂在油相和水相之间保持分离,以实现超低界面张力,并有效地回收了油。非离子表面活性剂导致Winsor III型微乳液的孔体积为0.85,而参考案例的孔体积为0.50。非离子表面活性剂使ASP驱油更具疏水性,使表面活性剂在油相和水相之间保持分离,以实现超低界面张力,并有效地回收了油。
更新日期:2020-05-28
down
wechat
bug