当前位置: X-MOL 学术Geobiology › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Micro- and nano-scale mineralogical characterization of Fe(II)-oxidizing bacterial stalks.
Geobiology ( IF 3.7 ) Pub Date : 2020-05-27 , DOI: 10.1111/gbi.12398
Ruggero Vigliaturo 1 , Alessandra Marengo 2 , Erica Bittarello 2 , Ileana Pérez-Rodríguez 1 , Goran Dražić 3 , Reto Gieré 1, 4
Affiliation  

Neutrophilic, microaerobic Fe(II)‐oxidizing bacteria (FeOB) from marine and freshwater environments are known to generate twisted ribbon‐like organo‐mineral stalks. These structures, which are extracellularly precipitated, are susceptible to chemical influences in the environment once synthesized. In this paper, we characterize the minerals associated with freshwater FeOB stalks in order to evaluate key organo‐mineral mechanisms involved in biomineral formation. Micro‐Raman spectroscopy and Field Emission Scanning Electron Microscopy revealed that FeOB isolated from drinking water wells in Sweden produced stalks with ferrihydrite, lepidocrocite and goethite as main mineral components. Based on our observations made by micro‐Raman Spectroscopy, field emission scanning electron microscopy and scanning transmission electron microscope combined with electron energy‐loss spectroscopy, we propose a model that describes the crystal‐growth mechanism, the Fe‐oxidation state, and the mineralogical state of the stalks, as well as the biogenic contribution to these features. Our study suggests that the main crystal‐growth mechanism in stalks includes nanoparticle aggregation and dissolution/re‐precipitation reactions, which are dominant near the organic exopolymeric material produced by the microorganism and in the peripheral region of the stalk, respectively.

中文翻译:

Fe(II)-氧化细菌茎的微米和纳米级矿物学表征。

已知来自海洋和淡水环境的嗜中性微需氧 Fe(II) 氧化细菌 (FeOB) 会产生扭曲的带状有机矿物茎。这些在细胞外沉淀的结构一旦合成就容易受到环境中的化学影响。在本文中,我们表征了与淡水 FeOB 茎相关的矿物质,以评估参与生物矿物形成的关键有机矿物机制。显微拉曼光谱和场发射扫描电子显微镜显示,从瑞典饮用水井中分离出的 FeOB 产生的茎以水铁矿、纤铁矿和针铁矿为主要矿物成分。根据我们通过显微拉曼光谱所做的观察,场发射扫描电子显微镜和扫描透射电子显微镜结合电子能量损失谱,我们提出了一个描述晶体生长机制、铁氧化态和茎的矿物学状态以及生物成因贡献的模型到这些功能。我们的研究表明,茎的主要晶体生长机制包括纳米颗粒聚集和溶解/再沉淀反应,它们分别在微生物产生的有机外聚材料附近和茎的外围区域占主导地位。
更新日期:2020-05-27
down
wechat
bug