当前位置: X-MOL 学术Cell Commun. Signal. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Exogenous fibroblast growth factor 1 ameliorates diabetes-induced cognitive decline via coordinately regulating PI3K/AKT signaling and PERK signaling.
Cell Communication and Signaling ( IF 8.4 ) Pub Date : 2020-05-27 , DOI: 10.1186/s12964-020-00588-9
Yanqing Wu 1, 2 , Chengbiao Wu 3 , Libing Ye 2 , Beini Wang 2 , Yuan Yuan 2 , Yaqian Liu 2 , Peipei Zheng 2 , Jun Xiong 2 , Yiyang Li 2 , Ting Jiang 2 , Xiaokun Li 2 , Jian Xiao 2
Affiliation  

Diabetes induces central nervous system damage, leading to cognitive decline. Fibroblast growth factor 1 (FGF1) has dual function of neuroprotection and normalizing hyperglycemia. To date, the precise mechanisms and potential treating strategies of FGF1 for diabetes-induced cognitive decline (DICD) hasn’t been fully elucidated. In this study, db/db mice were used as DICD animal model. We found that diabetes remarkably suppressed FGF1 expression in hippocampus. Thus, exogenous FGF1 had been treated for db/db mice and SH-SY5Y cells. FGF1 significantly ameliorates DICD with better spatial learning and memory function. Moreover, FGF1 blocked diabetes-induced morphological structure change, neuronal apoptosis and Aβ1–42 deposition and synaptic dysfunction in hippocampus. But normalizing glucose may not the only contributed factor for FGF1 treating DICD with evidencing that metformin-treated db/db mice has a inferior cognitive function than that in FGF1 group. Current mechanistic study had found that diabetes inhibits cAMP-response element binding protein (CREB) activity and subsequently suppresses brain derived neurotrophic factor (BDNF) level via coordinately regulating PERK signaling and PI3K/AKT signaling in hippocampus, which were reversed by FGF1. We conclude that FGF1 exerts its neuroprotective role and normalizing hyperglycemia effect, consequently ameliorates DICD, implying FGF1 holds a great promise to develop a new treatment for DICD.

中文翻译:

外源性成纤维细胞生长因子 1 通过协调调节 PI3K/AKT 信号和 PERK 信号来改善糖尿病引起的认知能力下降。

糖尿病会引起中枢神经系统损伤,导致认知能力下降。成纤维细胞生长因子 1 (FGF1) 具有神经保护和使高血糖正常化的双重功能。迄今为止,FGF1 治疗糖尿病引起的认知能力下降 (DICD) 的确切机制和潜在治疗策略尚未完全阐明。在本研究中,db/db 小鼠被用作 DICD 动物模型。我们发现糖尿病显着抑制了海马中 FGF1 的表达。因此,外源性 FGF1 已针对 db/db 小鼠和 SH-SY5Y 细胞进行了处理。FGF1 显着改善 DICD,具有更好的空间学习和记忆功能。此外,FGF1 可阻断糖尿病诱导的海马形态结构变化、神经元凋亡和 Aβ1-42 沉积和突触功能障碍。但葡萄糖正常化可能不是 FGF1 治疗 DICD 的唯一促成因素,这表明二甲双胍治疗的 db/db 小鼠的认知功能低于 FGF1 组。目前的机制研究发现,糖尿病通过协调调节海马中的 PERK 信号和 PI3K/AKT 信号来抑制 cAMP 反应元件结合蛋白 (CREB) 活性,随后抑制脑源性神经营养因子 (BDNF) 水平,这些信号被 FGF1 逆转。我们得出结论,FGF1 发挥其神经保护作用和使高血糖正常化的作用,从而改善 DICD,这意味着 FGF1 有望开发出一种新的 DICD 治疗方法。目前的机制研究发现,糖尿病通过协调调节海马中的 PERK 信号和 PI3K/AKT 信号来抑制 cAMP 反应元件结合蛋白 (CREB) 活性,随后抑制脑源性神经营养因子 (BDNF) 水平,这被 FGF1 逆转。我们得出结论,FGF1 发挥其神经保护作用和使高血糖正常化的作用,从而改善 DICD,这意味着 FGF1 有望开发出一种新的 DICD 治疗方法。目前的机制研究发现,糖尿病通过协调调节海马中的 PERK 信号和 PI3K/AKT 信号来抑制 cAMP 反应元件结合蛋白 (CREB) 活性,随后抑制脑源性神经营养因子 (BDNF) 水平,这些信号被 FGF1 逆转。我们得出结论,FGF1 发挥其神经保护作用和使高血糖正常化的作用,从而改善 DICD,这意味着 FGF1 有望开发出一种新的 DICD 治疗方法。
更新日期:2020-05-27
down
wechat
bug