当前位置: X-MOL 学术Comput. Fluids › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
3D Cell-Centered Hydrodynamics with Subscale Closure Model and Multi-Material Remap
Computers & Fluids ( IF 2.8 ) Pub Date : 2020-07-01 , DOI: 10.1016/j.compfluid.2020.104592
Vincent P. Chiravalle , Andrew Barlow , Nathaniel R. Morgan

Abstract We extend a higher-order finite volume cell-centered hydrodynamic (CCH) formulation to include an interface-aware subscale closure model and a multi-material remap for simulating 3D compressible hydrodynamic problems within an arbitrary Lagrangian-Eulerian (ALE) framework. This CCH formulation involves a multidirectional approximate Riemann solution using quadratic polynomial reconstructions of the stress tensor and the velocity. At the subscale level, we determine pair-wise material interactions by solving a distinct approximate Riemann problem at the common interface, using the volume of fluids (VOF) method to find the interface. Material interactions are constrained to ensure smooth pressure equilibration among materials. The accuracy and robustness of the ALE method is demonstrated by simulating a suite of 3D Cartesian multi-material problems covering both gas and solid dynamics, where each test case has two or more materials.

中文翻译:

具有亚尺度闭合模型和多材料重映射的 3D 以细胞为中心的流体动力学

摘要 我们扩展了高阶有限体积以细胞为中心的流体动力学 (CCH) 公式,以包括界面感知次尺度闭合模型和多材料重映射,用于在任意拉格朗日-欧拉 (ALE) 框架内模拟 3D 可压缩流体动力学问题。此 CCH 公式涉及使用应力张量和速度的二次多项式重建的多方向近似黎曼解。在子尺度级别,我们通过在公共界面解决一个明显的近似黎曼问题,使用流体体积 (VOF) 方法来找到界面,来确定成对的材料相互作用。材料相互作用受到限制,以确保材料之间的压力平衡。
更新日期:2020-07-01
down
wechat
bug