当前位置: X-MOL 学术Med. Biol. Eng. Comput. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Improvement in osseointegration of tricalcium phosphate-zircon for orthopedic applications: an in vitro and in vivo evaluation.
Medical & Biological Engineering & Computing ( IF 3.2 ) Pub Date : 2020-05-27 , DOI: 10.1007/s11517-020-02157-1
Abolfazl Bagherifard 1 , Hamed Joneidi Yekta 2 , Hossein Akbari Aghdam 3, 4 , Mehdi Motififard 4 , Ehsan Sanatizadeh 5 , Mazyar Ghadiri Nejad 6 , Saeid Esmaeili 7 , Saeed Saber-Samandari 2 , Erfan Sheikhbahaei 8 , Amirsalar Khandan 2
Affiliation  

Similar to metallic implant, using the compact bio-nanocomposite can provide a suitable strength due to its high stiffness and providing sufficient adhesion between bone and orthopedic implant. Therefore, using zirconia-reinforced calcium phosphate composites with new generation of calcium silicate composites was considered in this study. Additionally, investigation of microstructure, apatite formation, and mechanical characteristic of synthetic compact bio-nanocomposite bones was performed. Desired biodegradation, optimal bioactivity, and dissolution of tricalcium phosphate (TCP) were controlled to optimize its mechanical properties. The purpose of this study was to prepare the nanostructured TCP-wollastonite-zirconia (TCP-WS-Zr) using the space holder (SH) technique. The X-ray diffraction technique (XRD) was used to confirm the existence of favorable phases in the composite’s structure. Additionally, the effects of calcination temperature on the fuzzy composition, grain size, powder crystallinity, and final coatings were investigated. Furthermore, the Fourier-transform infrared spectroscopy (FTIR) was used for fundamental analysis of the resulting powder. In order to examine the shape and size of powder’s particles, particle size analysis was performed. The morphology and microstructure of the sample’s surface was studied by scanning electron microscopy (SEM), and to evaluate the dissolution rate, adaptive properties, and the comparison with the properties of single-phase TCP, the samples were immersed in physiological saline solution (0.9% sodium chloride) for 21 days. The results of in vivo evaluation illustrated an increase in the concentration of calcium ion release and proper osseointegration ratio, and the amount of calcium ion release in composite coatings was lower than that in TCP single phase. Nanostructured TCP-WS-Zr coatings reduced the duration of implant fixation next to the hardened tissue, and increased the bone regeneration due to its structure and dimensions of the nanometric phases of the forming phases. Finally, the animal evaluation shows that the novel bio-nanocomposite has increasing trend in healing of defected bone after 1 month.



中文翻译:

用于骨科应用的磷酸三钙锆石骨整合的改进:体外和体内评估。

与金属植入物类似,使用紧凑的生物纳米复合材料由于其高刚度可以提供合适的强度,并在骨骼和整形外科植入物之间提供足够的附着力。因此,本研究考虑将氧化锆增强的磷酸钙复合材料与新一代的硅酸钙复合材料一起使用。另外,对合成的紧凑型生物纳米复合材料骨骼的微观结构,磷灰石形成和力学特性进行了研究。控制所需的生物降解,最佳生物活性和磷酸三钙(TCP)的溶解,以优化其机械性能。这项研究的目的是使用空间支架(SH)技术制备纳米结构的TCP-硅灰石-氧化锆(TCP-WS-Zr)。X射线衍射技术(XRD)用于确认复合材料结构中存在有利相。另外,研究了煅烧温度对模糊成分,晶粒尺寸,粉末结晶度和最终涂层的影响。此外,使用傅里叶变换红外光谱(FTIR)对所得粉末进行基础分析。为了检查粉末颗粒的形状和尺寸,进行了粒度分析。通过扫描电子显微镜(SEM)研究样品表面的形貌和微观结构,并评估其溶解速率,适应性以及与单相TCP的性能比较,将样品浸入生理盐水溶液(0.9 %氯化钠)21天。体内评价结果表明,钙离子释放的浓度和适当的骨整合率增加,复合涂层中钙离子的释放量低于TCP单相。纳米结构化TCP-WS-Zr涂层减少了硬化组织旁植入物固定的时间,并由于其形成相的纳米相的结构和尺寸而增加了骨再生。最后,动物评估表明,新型生物纳米复合材料在1个月后的缺损骨愈合中具有增加的趋势。纳米结构化TCP-WS-Zr涂层减少了硬化组织旁植入物固定的时间,并由于其形成相的纳米相的结构和尺寸而增加了骨再生。最后,动物评估表明,新型生物纳米复合材料在1个月后的缺损骨愈合中具有增加的趋势。纳米结构化TCP-WS-Zr涂层减少了硬化组织旁植入物固定的时间,并由于其形成相的纳米相的结构和尺寸而增加了骨再生。最后,动物评估表明,新型生物纳米复合材料在1个月后的缺损骨愈合中具有增加的趋势。

更新日期:2020-05-27
down
wechat
bug