当前位置: X-MOL 学术Ann. Biomed. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Constructing a Human Atrial Fibre Atlas.
Annals of Biomedical Engineering ( IF 3.8 ) Pub Date : 2020-05-26 , DOI: 10.1007/s10439-020-02525-w
Caroline H Roney 1 , Rokas Bendikas 1 , Farhad Pashakhanloo 2 , Cesare Corrado 1 , Edward J Vigmond 3, 4 , Elliot R McVeigh 5 , Natalia A Trayanova 6 , Steven A Niederer 1
Affiliation  

Atrial anisotropy affects electrical propagation patterns, anchor locations of atrial reentrant drivers, and atrial mechanics. However, patient-specific atrial fibre fields and anisotropy measurements are not currently available, and consequently assigning fibre fields to atrial models is challenging. We aimed to construct an atrial fibre atlas from a high-resolution DTMRI dataset that optimally reproduces electrophysiology simulation predictions corresponding to patient-specific fibre fields, and to develop a methodology for automatically assigning fibres to patient-specific anatomies. We extended an atrial coordinate system to map the pulmonary veins, vena cava and appendages to standardised positions in the coordinate system corresponding to the average location across the anatomies. We then expressed each fibre field in this atrial coordinate system and calculated an average fibre field. To assess the effects of fibre field on patient-specific modelling predictions, we calculated paced activation time maps and electrical driver locations during AF. In total, 756 activation time maps were calculated (7 anatomies with 9 fibre maps and 2 pacing locations, for the endocardial, epicardial and bilayer surface models of the LA and RA). Patient-specific fibre fields had a relatively small effect on average paced activation maps (range of mean local activation time difference for LA fields: 2.67–3.60 ms, and for RA fields: 2.29–3.44 ms), but had a larger effect on maximum LAT differences (range for LA 12.7–16.6%; range for RA 11.9–15.0%). A total of 126 phase singularity density maps were calculated (7 anatomies with 9 fibre maps for the LA and RA bilayer models). The fibre field corresponding to anatomy 1 had the highest median PS density map correlation coefficient for LA bilayer simulations (0.44 compared to the other correlations, ranging from 0.14 to 0.39), while the average fibre field had the highest correlation for the RA bilayer simulations (0.61 compared to the other correlations, ranging from 0.37 to 0.56). For sinus rhythm simulations, average activation time is robust to fibre field direction; however, maximum differences can still be significant. Patient specific fibres are more important for arrhythmia simulations, particularly in the left atrium. We propose using the fibre field corresponding to DTMRI dataset 1 for LA simulations, and the average fibre field for RA simulations as these optimally predicted arrhythmia properties.



中文翻译:

构建人体心房纤维图谱。

心房各向异性影响电传播模式、心房折返驱动器的锚定位置和心房力学。然而,目前还没有针对患者的心房纤维场和各向异性测量,因此将纤维场分配给心房模型具有挑战性。我们的目标是从高分辨率 DTMRI 数据集构建心房纤维图谱,以最佳方式再现与患者特定纤维场相对应的电生理学模拟预测,并开发一种将纤维自动分配给患者特定解剖结构的方法。我们扩展了心房坐标系,以将肺静脉、腔静脉和附属物映射到坐标系中的标准化位置,该坐标系对应于整个解剖结构的平均位置。然后我们在这个心房坐标系中表达每个纤维场并计算平均纤维场。为了评估纤维场对患者特定建模预测的影响,我们计算了 AF 期间的起搏激活时间图和电驱动器位置。总共计算了 756 个激活时间图(7 个解剖结构,9 个纤维图和 2 个起搏位置,用于 LA 和 RA 的心内膜、心外膜和双层表面模型)。患者特定的纤维场对平均起搏激活图的影响相对较小(LA 场的平均局部激活时间差范围:2.67-3.60 ms,RA 场:2.29-3.44 ms),但对最大LAT 差异(LA 范围为 12.7–16.6%;RA 范围为 11.9–15.0%)。计算了总共 126 个相位奇点密度图(LA 和 RA 双层模型的 7 个解剖结构和 9 个纤维图)。解剖 1 对应的纤维场在 LA 双层模拟中具有最高的中值 PS 密度图相关系数(0.44 与其他相关性相比,范围从 0.14 到 0.39),而平均纤维场在 RA 双层模拟中具有最高的相关性( 0.61 与其他相关性相比,范围从 0.37 到 0.56)。对于窦性心律模拟,平均激活时间对纤维场方向具有鲁棒性;但是,最大差异仍然可能很大。患者特异性纤维对于心律失常模拟更为重要,尤其是在左心房。我们建议使用与 DTMRI 数据集 1 对应的光纤场进行 LA 模拟,

更新日期:2020-05-26
down
wechat
bug