当前位置: X-MOL 学术bioRxiv. Mol. Biol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The cryoEM structure of the fibril-forming low-complexity domain of hnRNPA2 reveals distinct differences from pathogenic amyloid and shows how mutation converts it to the pathogenic form
bioRxiv - Molecular Biology Pub Date : 2020-05-25 , DOI: 10.1101/2020.05.24.113621
Jiahui Lu , Qin Cao , Michael P. Hughes , Michael R. Sawaya , David R. Boyer , Duilio Cascio , David S. Eisenberg

hnRNPA2 is one of a group of human ribonucleoproteins (RNPs) involved in RNA metabolism which form fibrils both under cellular stress and in mutated form in neurodegenerative conditions. Previous work established that the C-terminal low-complexity domain (LCD) of hnRNPA2 fibrillizes under stress, and that missense mutations in this domain are found in the disease multisystem proteinopathy (MSP) with symptoms indistinguishable from ALS and FTD. However, little is known at the atomic level about the hnRNPA2 LCD structure that is involved in those processes and how disease mutations cause structural change. Here we present the cryo-electron microscopy (cryoEM) structure of hnRNPA2 LCD fibril core and demonstrate its capability to form a reversible hydrogel in vitro containing amyloid-like fibrils. Whereas these fibrils, like pathogenic amyloid, are formed from protein chains stacked into β-sheets by backbone hydrogen bonds, they display distinct structural differences: the chains are kinked, enabling non-covalent cross-linking of fibrils and disfavoring formation of pathogenic steric zippers. Both their reversibility and energetic calculations suggest these fibrils are less stable than pathogenic amyloid. Moreover, the crystal structure of the disease-mutation-containing segment of hnRNPA2 suggests that the replacement fundamentally alters the fibril structure to a more stable energetic state. These findings illuminate how molecular interactions promote protein fibril networks and how mutation can transform fibril structure from functional to pathogenic form.

中文翻译:

hnRNPA2的原纤维形成低复杂性结构域的cryoEM结构揭示了与致病性淀粉样蛋白的明显差异,并显示了突变如何将其转化为致病性形式

hnRNPA2是参与RNA代谢的一组人核糖核蛋白(RNP)中的一种,在细胞应激和神经退行性条件下均以突变形式形成原纤维。先前的工作建立了hnRNPA2的C端低复杂域(LCD)在压力下原纤维化,并且在该多系统蛋白病(MSP)中发现了该域的错义突变,其症状与ALS和FTD难以区分。但是,在原子水平上对涉及这些过程的hnRNPA2 LCD结构以及疾病突变如何引起结构变化的了解甚少。在这里,我们介绍hnRNPA2 LCD原纤维核心的低温电子显微镜(cryoEM)结构,并证明其形成体外可逆水凝胶的能力,该水凝胶包含淀粉样蛋白原纤维。而这些原纤维,如致病性淀粉样蛋白,由通过主链氢键堆叠成β-折叠的蛋白质链形成,它们显示出明显的结构差异:链扭结,使原纤维能够非共价交联,不利于致病性立体拉链的形成。它们的可逆性和能量计算均表明,这些原纤维的稳定性不如致病性淀粉样蛋白。此外,hnRNPA2包含疾病突变的节段的晶体结构表明,置换从根本上将原纤维结构改变为更稳定的能量状态。这些发现阐明了分子相互作用如何促进蛋白质原纤维网络以及突变如何将原纤维结构从功能形式转变为致病形式。链扭结,使原纤维非共价交联,不利于致病性立体拉链的形成。它们的可逆性和能量计算均表明,这些原纤维的稳定性不如致病性淀粉样蛋白。此外,hnRNPA2包含疾病突变的节段的晶体结构表明,置换从根本上将原纤维结构改变为更稳定的能量状态。这些发现阐明了分子相互作用如何促进蛋白质原纤维网络以及突变如何将原纤维结构从功能形式转变为致病形式。链扭结,使原纤维非共价交联,不利于致病性立体拉链的形成。它们的可逆性和能量计算均表明,这些原纤维的稳定性不如致病性淀粉样蛋白。此外,hnRNPA2包含疾病突变的节段的晶体结构表明,置换从根本上将原纤维结构改变为更稳定的能量状态。这些发现阐明了分子相互作用如何促进蛋白质原纤维网络以及突变如何将原纤维结构从功能形式转变为致病形式。hnRNPA2包含疾病突变的区段的晶体结构表明,这种置换从根本上将原纤维结构改变为更稳定的能量状态。这些发现阐明了分子相互作用如何促进蛋白质原纤维网络以及突变如何将原纤维结构从功能形式转变为致病形式。hnRNPA2包含疾病突变的区段的晶体结构表明,这种置换从根本上将原纤维结构改变为更稳定的能量状态。这些发现阐明了分子相互作用如何促进蛋白质原纤维网络以及突变如何将原纤维结构从功能形式转变为致病形式。
更新日期:2020-05-25
down
wechat
bug