当前位置: X-MOL 学术Sci. Rep. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Multi-beam two-photon polymerization for fast large area 3D periodic structure fabrication for bioapplications.
Scientific Reports ( IF 4.6 ) Pub Date : 2020-05-26 , DOI: 10.1038/s41598-020-64955-9
Christian Maibohm 1 , Oscar F Silvestre 1, 2 , Jérôme Borme 3 , Maina Sinou 4 , Kevin Heggarty 4 , Jana B Nieder 1
Affiliation  

Two-photon polymerization (TPP) is capable of fabricating 3D structures with dimensions from sub-µm to a few hundred µm. As a direct laser writing (DLW) process, fabrication time of 3D TPP structures scale with the third order, limiting its use in large volume fabrication. Here, we report on a scalable fabrication method that cuts fabrication time to a fraction. A parallelized 9 multi-beamlets DLW process, created by a fixed diffraction optical element (DOE) and subsequent stitching are used to fabricate large periodic high aspect ratio 3D microstructured arrays with sub-micron features spanning several hundred of µm2. The wall structure in the array is designed with a minimum of traced lines and is created by a low numerical aperture (NA) microscope objective, leading to self-supporting lines omitting the need for line-hatching. The fabricated periodic arrays are applied in a cell – 3D microstructure interaction study using living HeLa cells. First indications of increased cell proliferation in the presence of 3D microstructures compared to planar surfaces are obtained. Furthermore, the cells adopt an elongated morphology when attached to the 3D microstructured surfaces. Both results constitute promising findings rendering the 3D microstructures a suited tool for cell interaction experiments, e.g. for cell migration, separation or even tissue engineering studies.



中文翻译:

多束双光子聚合,用于生物应用的快速大面积3D周期性结构制造。

双光子聚合(TPP)能够制造尺寸从亚微米到几百微米的3D结构。作为直接激光写入(DLW)工艺,3D TPP结构的制造时间与三阶成比例,从而限制了其在大批量制造中的使用。在这里,我们报告了一种可扩展的制造方法,该方法可将制造时间缩短到一小部分。由固定衍射光学元件(DOE)创建的并行9个多小束DLW工艺和随后的缝合用于制造具有数百微米2亚微米特征的大型周期性高长宽比3D微结构阵列。阵列中的墙结构采用最少的迹线设计,并且是由低数值孔径(NA)显微镜物镜创建的,从而导致了自支撑线,从而无需线阴影。使用活HeLa细胞将预制的周期阵列应用于细胞– 3D微结构相互作用研究中。获得与平面相比存在3D微结构时细胞增殖增加的第一指征。此外,当细胞附着在3D微结构化表面上时,它们会呈现细长的形态。这两个结果构成了令人鼓舞的发现,使3D微结构成为细胞相互作用实验(例如细胞迁移,分离甚至组织工程研究)的合适工具。

更新日期:2020-05-26
down
wechat
bug