当前位置: X-MOL 学术Cells › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Membrane Elastic Properties During Neural Precursor Cell Differentiation.
Cells ( IF 6 ) Pub Date : 2020-05-26 , DOI: 10.3390/cells9061323
Juliana Soares 1, 2 , Glauber R de S Araujo 3 , Cintia Santana 1 , Diana Matias 1, 4 , Vivaldo Moura-Neto 1, 4 , Marcos Farina 1 , Susana Frases 3 , Nathan B Viana 2, 5 , Luciana Romão 1 , H Moysés Nussenzveig 2, 5 , Bruno Pontes 1, 2
Affiliation  

Neural precursor cells differentiate into several cell types that display distinct functions. However, little is known about how cell surface mechanics vary during the differentiation process. Here, by precisely measuring membrane tension and bending modulus, we map their variations and correlate them with changes in neural precursor cell morphology along their distinct differentiation fates. Both cells maintained in culture as neural precursors as well as those plated in neurobasal medium reveal a decrease in membrane tension over the first hours of culture followed by stabilization, with no change in bending modulus. During astrocyte differentiation, membrane tension initially decreases and then increases after 72 h, accompanied by consolidation of glial fibrillary acidic protein expression and striking actin reorganization, while bending modulus increases following observed alterations. For oligodendrocytes, the changes in membrane tension are less abrupt over the first hours, but their values subsequently decrease, correlating with a shift from oligodendrocyte marker O4 to myelin basic protein expressions and a remarkable actin reorganization, while bending modulus remains constant. Oligodendrocytes at later differentiation stages show membrane vesicles with similar membrane tension but higher bending modulus as compared to the cell surface. Altogether, our results display an entire spectrum of how membrane elastic properties are varying, thus contributing to a better understanding of neural differentiation from a mechanobiological perspective.

中文翻译:

神经前体细胞分化过程中的膜弹性特性。

神经的 前体细胞分化成几种具有不同功能的细胞。然而,关于细胞表面力学在分化过程中如何变化的知之甚少。在这里,通过精确测量膜的张力和弯曲模量,我们绘制了它们的变化图,并将它们与神经前体细胞形态沿其独特的分化命运的变化关联起来。在培养过程中,作为神经前体维持的两种细胞以及接种在神经基础培养基中的细胞均在培养的最初几个小时内膜张力降低,随后稳定下来,弯曲模量没有变化。在星形胶质细胞分化过程中,膜张力最初下降,然后在72小时后增加,伴随着胶质纤维酸性蛋白表达的巩固和惊人的肌动蛋白重组,弯曲模量随观察到的变化而增加。对于少突胶质细胞,在最初的几个小时内膜张力的变化不那么突然,但是其值随后降低,这与从少突胶质细胞标记物O4到髓鞘碱性蛋白表达的转变和显着的肌动蛋白重组有关,而弯曲模量保持恒定。少突胶质细胞在后期分化阶段显示出与细胞表面相比具有相似膜张力但具有更高弯曲模量的膜囊泡。总而言之,我们的结果显示了膜弹性特性如何变化的整个过程,从而有助于从力学生物学的角度更好地理解神经分化。在最初的几个小时内,膜张力的变化不那么突然,但是其值随后下降,这与从少突胶质细胞标记物O4到髓鞘碱性蛋白表达的转变以及肌动蛋白的显着重组有关,而弯曲模量保持恒定。少突胶质细胞在后期分化阶段显示出与细胞表面相比具有相似膜张力但具有更高弯曲模量的膜囊泡。总而言之,我们的结果显示了膜弹性特性如何变化的整个过程,从而有助于从力学生物学的角度更好地理解神经分化。在最初的几个小时内,膜张力的变化不那么突然,但是其值随后下降,这与从少突胶质细胞标记物O4转变为髓磷脂碱性蛋白表达和显着的肌动蛋白重组有关,而弯曲模量保持恒定。少突胶质细胞在后期分化阶段显示出与细胞表面相比具有相似膜张力但具有更高弯曲模量的膜囊泡。总而言之,我们的结果显示了膜弹性特性如何变化的整个过程,从而有助于从力学生物学的角度更好地理解神经分化。而弯曲模量保持不变。少突胶质细胞在后期分化阶段显示出与细胞表面相比具有相似膜张力但具有更高弯曲模量的膜囊泡。总而言之,我们的结果显示了膜弹性特性如何变化的整个过程,从而有助于从力学生物学的角度更好地理解神经分化。而弯曲模量保持不变。少突胶质细胞在后期分化阶段显示出与细胞表面相比具有相似膜张力但具有更高弯曲模量的膜囊泡。总而言之,我们的结果显示了膜弹性特性如何变化的整个过程,从而有助于从力学生物学的角度更好地理解神经分化。
更新日期:2020-05-26
down
wechat
bug