当前位置: X-MOL 学术J. Prosthet. Dent. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Chemical composition, surface roughness, and ceramic bond strength of additively manufactured cobalt-chromium dental alloys
The Journal of Prosthetic Dentistry ( IF 4.6 ) Pub Date : 2020-05-25 , DOI: 10.1016/j.prosdent.2020.03.012
Marta Revilla-León 1 , Nadin Al-Haj Husain 2 , Mohammed Mujtaba Methani 3 , Mutlu Özcan 4
Affiliation  

Statement of problem

Selective laser melting (SLM) additive manufacturing (AM) technology is a current option to fabricate cobalt-chromium (Co-Cr) metal frameworks for dental prostheses. However, the Co-Cr alloy composition, surface roughness, and ceramic bond strength values that SLM metals can obtain are not well-defined.

Purpose

The purpose of this in vitro study was to compare the chemical composition, surface roughness, and ceramic shear bond strength of the milled and SLM Co-Cr dental alloys.

Material and methods

A total of 50 disks of 5 mm in diameter and 1 mm in thickness were fabricated by using subtractive (control group) and AM with each of following SLM providers: SLM-1 (EOS), SLM-2 (3D systems), and SLM-3 (Concept Laser). The milled disks were airborne-particle abraded with 100-μm aluminum oxide particles. All the specimens were cleaned before surface roughness (Ra), weight (Wt%), and atomic (At%) percentages were analyzed. Three-dimensional profilometry was used to analyze the topographical properties of the surface parameters Ra (mean surface roughness). The chemical composition of Co-Cr alloy specimens was determined by using energy dispersive X-ray (EDAX) elemental analysis in a scanning electron microscope (SEM). Thereafter, the specimens were bonded to a ceramic (Dentine A3 and Enamel S-59; Creation CC) interface. Specimens were stored for 24 hours at 23 °C. The bond strength of the SLM-ceramic interface was measured by using the macroshear test (SBT) method (n=10). Adhesion tests were performed in a universal testing machine (1 mm/min). The Shapiro-Wilk test revealed that the chemical composition data were not normally distributed. Therefore, the atomic (At%) and weight percentages (Wt%) were analyzed by using the Kruskal-Wallis test, followed by pairwise Mann-Whitney U tests between the control and AM groups (AM-1 to AM-4). However, the Shapiro-Wilk test revealed that the surface roughness (Ra) and ceramic bond strength data were normally distributed. Therefore, data were analyzed by using 1-way ANOVA, followed by the post hoc Sidak test (α=.05).

Results

Significant differences were obtained in Wt%, At%, and Ra values among the Co-Cr alloys evaluated (P<.05). Furthermore, the control group revealed significantly lower mean ±standard deviation Ra values (0.79 ±0.11 μm), followed by AM-3 (1.57 ±0.15 μm), AM-2 (1.80 ±0.43 μm), AM-1 (2.43 ±0.34 μm), and AM-4 (2.84 ±0.27 μm). However, no significant differences were obtained in the metal-ceramic shear bond strength among the different groups evaluated, ranging from mean ±standard deviation 75.77 ±11.92 MPa to 83.65 ±12.21 MPa.

Conclusions

Co-Cr dental alloys demonstrated a significant difference in their chemical compositions. Subtractive and additive manufacturing procedures demonstrated a significant influence on the surface roughness of the Co-Cr alloy specimens. However, the metal-ceramic shear bond strength of Co-Cr alloys was found to be independent of the manufacturing process.



中文翻译:

增材制造的钴铬牙科合金的化学成分,表面粗糙度和陶瓷结合强度

问题陈述

选择性激光熔融(SLM)增材制造(AM)技术是制造用于牙科假体的钴铬(Co-Cr)金属框架的当前选择。但是,SLM金属可获得的Co-Cr合金成分,表面粗糙度和陶瓷结合强度值尚不明确。

目的

这项体外研究的目的是比较研磨和SLM Co-Cr牙科合金的化学成分,表面粗糙度和陶瓷剪切粘结强度。

材料与方法

通过使用减法(对照组)和AM与以下每个SLM提供程序一起制造了总共50个直径5毫米,厚度1毫米的磁盘:SLM-1(EOS),SLM-2(3D系统)和SLM -3(概念激光)。将研磨过的圆盘用100-μm氧化铝颗粒在空气中进行颗粒研磨。在分析表面粗糙度(Ra),重量(Wt%)和原子(At%)百分比之前,清洁所有样品。三维轮廓仪用于分析表面参数Ra(平均表面粗糙度)的形貌特性。通过在扫描电子显微镜(SEM)中使用能量色散X射线(EDAX)元素分析来确定Co-Cr合金样品的化学成分。之后,将样品粘结到陶瓷(Dentine A3和Enamel S-59; Creation CC)界面上。标本在23°C下保存24小时。通过使用大剪切试验(SBT)方法(n = 10)测量SLM-陶瓷界面的结合强度。粘合力测试是在通用测试机(1毫米/分钟)中进行的。Shapiro-Wilk测试表明化学成分数据不是正态分布。因此,通过使用Kruskal-Wallis检验,然后在对照组和AM组(AM-1至AM-4)之间进行成对的Mann-Whitney U检验,分析了原子(At%)和重量百分比(Wt%)。但是,Shapiro-Wilk测试表明表面粗糙度(Ra)和陶瓷结合强度数据呈正态分布。因此,使用1向ANOVA分析数据,然后进行事后Sidak检验(α= .05)。通过使用大剪切试验(SBT)方法(n = 10)测量SLM-陶瓷界面的结合强度。粘合力测试是在通用测试机(1毫米/分钟)中进行的。Shapiro-Wilk测试表明化学成分数据不是正态分布。因此,通过使用Kruskal-Wallis检验,然后在对照组和AM组(AM-1至AM-4)之间进行成对的Mann-Whitney U检验,分析了原子(At%)和重量百分比(Wt%)。但是,Shapiro-Wilk测试表明表面粗糙度(Ra)和陶瓷结合强度数据呈正态分布。因此,使用1向ANOVA分析数据,然后进行事后Sidak检验(α= .05)。通过使用大剪切试验(SBT)方法(n = 10)测量SLM-陶瓷界面的结合强度。粘合力测试是在通用测试机(1毫米/分钟)中进行的。Shapiro-Wilk测试表明化学成分数据不是正态分布。因此,通过使用Kruskal-Wallis检验,然后在对照组和AM组(AM-1至AM-4)之间进行成对的Mann-Whitney U检验,分析了原子(At%)和重量百分比(Wt%)。但是,Shapiro-Wilk测试表明表面粗糙度(Ra)和陶瓷结合强度数据呈正态分布。因此,使用1向ANOVA分析数据,然后进行事后Sidak检验(α= .05)。Shapiro-Wilk测试表明化学成分数据不是正态分布。因此,通过使用Kruskal-Wallis检验,然后在对照组和AM组(AM-1至AM-4)之间进行成对的Mann-Whitney U检验,分析了原子(At%)和重量百分比(Wt%)。但是,Shapiro-Wilk测试表明表面粗糙度(Ra)和陶瓷结合强度数据呈正态分布。因此,使用1向ANOVA分析数据,然后进行事后Sidak检验(α= .05)。Shapiro-Wilk测试表明化学成分数据不是正态分布。因此,通过使用Kruskal-Wallis检验,然后在对照组和AM组(AM-1至AM-4)之间进行成对的Mann-Whitney U检验,分析了原子(At%)和重量百分比(Wt%)。但是,Shapiro-Wilk测试表明表面粗糙度(Ra)和陶瓷结合强度数据呈正态分布。因此,使用1向ANOVA分析数据,然后进行事后Sidak检验(α= .05)。Shapiro-Wilk试验表明,表面粗糙度(Ra)和陶瓷结合强度数据呈正态分布。因此,使用1向ANOVA分析数据,然后进行事后Sidak检验(α= .05)。Shapiro-Wilk试验表明,表面粗糙度(Ra)和陶瓷结合强度数据呈正态分布。因此,使用1向ANOVA分析数据,然后进行事后Sidak检验(α= .05)。

结果

在所评估的Co-Cr合金中,Wt%,At%和Ra值存在显着差异(P <.05)。此外,对照组的平均±标准偏差Ra值(0.79±0.11μm)显着降低,其次是AM-3(1.57±0.15μm),AM-2(1.80±0.43μm),AM-1(2.43±0.34) μm)和AM-4(2.84±0.27μm)。但是,在评估的不同组之间,金属陶瓷剪切粘结强度没有发现显着差异,范围从平均值±标准偏差75.77±11.92 MPa到83.65±12.21 MPa。

结论

Co-Cr牙科合金在化学成分上显示出显着差异。减法和增材制造程序证明对Co-Cr合金试样的表面粗糙度有重大影响。然而,发现钴铬合金的金属-陶瓷剪切结合强度与制造工艺无关。

更新日期:2020-05-25
down
wechat
bug