当前位置: X-MOL 学术Ocean Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Improved control of propeller ventilation using an evidence reasoning rule based Adaboost.M1 approach
Ocean Engineering ( IF 5 ) Pub Date : 2020-08-01 , DOI: 10.1016/j.oceaneng.2020.107329
Haibo Gao , Linhao Liao , Yelan He , Zhiguo Lin , Nianzhong Chen , Xiaobin Xu , Xiaojian Xu

Abstract Marine propeller ventilation, which can occur in extreme seas, reduces energy efficiency of the ship, and can result in significant safety hazards during navigation. A major maritime challenge is to predict water levels during extreme seas and manage an appropriate control strategy for the propulsion system with fast response times. Here we report application of an evidence reasoning (ER) rule-based Adaboost.M1 approach to rapidly estimate propeller ventilation levels thereby improving propulsion management. The ER rule was used as the weak learner of Adaboost.M1 to extract torque signal from the propulsion motor and current signal from the propulsion inverter. First, K-means clustering was used to select the reference value sets of each weak learner. Second, the extracted signals were transformed into multiple pieces of identification evidence, which were combined through ER to estimate the ventilation level by present weak learner. Parameters of the weak learner were then updated according to the estimation results. Finally, the weak learners that had completed training were combined into a strong learner to estimate final ventilation levels. Experimental results showed that the estimation accuracy of the weak learner provided by the ER rule for Adaboost.M1 approach was more than 50%, which resulted in the accurate estimation by the strong learner. This approach provides an important technical advance to allow more effective switching control strategies for marine electric propulsion systems under different sea conditions.

中文翻译:

使用基于证据推理规则的 Adaboost.M1 方法改进螺旋桨通风控制

摘要 船用螺旋桨通风可发生在极端海域,降低了船舶的能源效率,并可能导致航行过程中的重大安全隐患。一个主要的海事挑战是预测极端海况下的水位,并以快速响应时间管理推进系统的适当控制策略。在这里,我们报告应用基于证据推理 (ER) 规则的 Adaboost.M1 方法来快速估计螺旋桨通风水平,从而改善推进管理。ER 规则被用作 Adaboost.M1 的弱学习器来提取来自推进电机的扭矩信号和来自推进逆变器的电流信号。首先,使用K-means聚类来选择每个弱学习器的参考值集。第二,提取的信号转化为多条识别证据,通过ER组合,估计当前弱学习器的通风水平。然后根据估计结果更新弱学习器的参数。最后,将完成训练的弱学习器组合成一个强学习器,以估计最终的通风水平。实验结果表明,ER规则为Adaboost.M1方法提供的弱学习器估计准确率在50%以上,使得强学习器的估计准确。这种方法提供了重要的技术进步,可以在不同海况下为船用电力推进系统提供更有效的切换控制策略。通过 ER 将它们结合起来以估计当前弱学习器的通风水平。然后根据估计结果更新弱学习器的参数。最后,将完成训练的弱学习器组合成一个强学习器,以估计最终的通风水平。实验结果表明,ER规则为Adaboost.M1方法提供的弱学习器估计准确率在50%以上,使得强学习器的估计准确。这种方法提供了重要的技术进步,可以在不同海况下为船用电力推进系统提供更有效的切换控制策略。通过 ER 将它们结合起来以估计当前弱学习器的通风水平。然后根据估计结果更新弱学习器的参数。最后,将完成训练的弱学习器组合成一个强学习器,以估计最终的通风水平。实验结果表明,ER规则为Adaboost.M1方法提供的弱学习器估计准确率在50%以上,使得强学习器的估计准确。这种方法提供了重要的技术进步,可以在不同海况下为船用电力推进系统提供更有效的切换控制策略。完成训练的弱学习器被组合成一个强学习器来估计最终的通风水平。实验结果表明,ER规则为Adaboost.M1方法提供的弱学习器估计准确率在50%以上,使得强学习器的估计准确。这种方法提供了重要的技术进步,可以在不同海况下为船用电力推进系统提供更有效的切换控制策略。完成训练的弱学习器被组合成一个强学习器来估计最终的通风水平。实验结果表明,ER规则为Adaboost.M1方法提供的弱学习器估计准确率在50%以上,使得强学习器的估计准确。这种方法提供了重要的技术进步,可以在不同海况下为船用电力推进系统提供更有效的切换控制策略。
更新日期:2020-08-01
down
wechat
bug