当前位置: X-MOL 学术Fusion Eng. Des. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Use of virtual actuators in ASDEX Upgrade control
Fusion Engineering and Design ( IF 1.7 ) Pub Date : 2020-10-01 , DOI: 10.1016/j.fusengdes.2020.111735
O. Kudláček , W. Treutterer , B. Sieglin , F. Janky , F. Felici , I. Gomez-Ortiz , A. Gräter , T. Maceina , M. Maraschek , T. Zehetbauer

Abstract Actuator management is an essential part of a modern tokamak plasma control system. It has to deal with a large number of control task simultaneously, needs to be able to operate close to stability limits and to avoid disruptions. In the ASDEX Upgrade tokamak experiment, the process of actuator management development is ongoing. As a first step, we have removed direct assignement of physical actuators to controllers responsible for the control task execution. Instead, the controller is communicating to the so-called virtual actuator, which groups an arbitrary number of actuators of the same type (so far ECRH only) and distributes the controller command between them. The virtual actuator has been implemented and used on ASDEX Upgrade in the 2019 experimental campaign. It gave valuable contributions to several physics experiments. First, the implementation of the virtual actuator enabled β p control by ECRH power, which is of interest especially for I-mode and ELM-free H-mode discharges. Second, it was used in the electron temperature control experiments, which is a useful control tool for transport studies. Third, the concept was used for the density limit disruption avoidance experiments where central ECRH power is applied to recover the plasma from a disruptive zone. The current paper describes the use of the virtual actuator in these cases and based on the gained experience, it suggests future developments and improvements of the virtual actuator on ASDEX Upgrade discharge control system.

中文翻译:

在 ASDEX 升级控制中使用虚拟执行器

摘要 执行器管理是现代托卡马克等离子控制系统的重要组成部分。它必须同时处理大量控制任务,需要能够在接近稳定极限的情况下运行并避免中断。在 ASDEX 升级托卡马克实验中,执行器管理开发的过程正在进行中。作为第一步,我们已经取消了将物理执行器直接分配给负责控制任务执行的控制器。相反,控制器正在与所谓的虚拟执行器进行通信,该虚拟执行器将任意数量的相同类型的执行器(目前仅适用于 ECRH)分组并在它们之间分配控制器命令。虚拟执行器已在 2019 年实验活动中实现并用于 ASDEX 升级。它为多项物理实验做出了宝贵贡献。第一的,虚拟致动器的实现通过 ECRH 功率实现了 β p 控制,这对于 I 模式和无 ELM 的 H 模式放电尤其有意义。其次,它被用于电子温度控制实验,这是传输研究的有用控制工具。第三,该概念用于密度极限破坏避免实验,其中应用中央 ECRH 功率从破坏区恢复等离子体。目前的论文描述了虚拟执行器在这些情况下的使用,并根据获得的经验,提出了虚拟执行器在 ASDEX 升级排放控制系统上的未来发展和改进。它被用于电子温度控制实验,这是一种用于传输研究的有用控制工具。第三,该概念用于密度极限破坏避免实验,其中应用中央 ECRH 功率从破坏区恢复等离子体。目前的论文描述了虚拟执行器在这些情况下的使用,并根据获得的经验,提出了虚拟执行器在 ASDEX 升级排放控制系统上的未来发展和改进。它被用于电子温度控制实验,这是一种用于传输研究的有用控制工具。第三,该概念用于密度极限破坏避免实验,其中应用中央 ECRH 功率从破坏区恢复等离子体。目前的论文描述了虚拟执行器在这些情况下的使用,并根据获得的经验,提出了虚拟执行器在 ASDEX 升级排放控制系统上的未来发展和改进。
更新日期:2020-10-01
down
wechat
bug