当前位置: X-MOL 学术Addit. Manuf. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Meta-modeling of high-fidelity FEA simulation for efficient product and process design in additive manufacturing
Additive Manufacturing ( IF 11.0 ) Pub Date : 2020-05-26 , DOI: 10.1016/j.addma.2020.101211
Lening Wang , Xiaoyu Chen , Sungku Kang , Xinwei Deng , Ran Jin

Finite element analysis (FEA) has been widely adopted to identify potential defects in additive manufacturing (AM) processes. For personalized product realization, it is necessary to validate a number of heterogeneous product and process designs before or during manufacturing by using FEA. Multi-fidelity FEA simulations can be readily implemented with different capabilities in terms of simulation accuracy. However, due to its complexity, high-fidelity FEA simulation is time-consuming and decreases the efficiency of product realization in AM, while low-fidelity FEA simulation has fast computation speed yet limited capability. Hence, our objective is to improve the capability of FEA by providing an efficient data-driven model. In this research, a Gaussian process-constrained general path model is proposed to approximate the high-fidelity FEA simulation results based on low-fidelity results voxel-by-voxel. The proposed model quantifies the heterogeneous discrepancies between low- and high-fidelity FEA simulation results by incorporating the product design information (e.g., Cartesian coordinates of deposition sequence) and process design information from inputs of FEA simulation (e.g., input heat). Therefore, it enables the validation of new product and process designs based on the simulation results with the desired capability in a timely manner. The advantages of the proposed method are illustrated by FEA simulations of the fused deposition modeling (FDM) process with two levels of fidelity (i.e., low- and high-fidelity).



中文翻译:

高保真有限元分析的元建模,可实现增材制造中高效的产品和工艺设计

有限元分析(FEA)已被广泛采用以识别增材制造(AM)过程中的潜在缺陷。为了实现个性化产品,必须在制造之前或期间通过使用FEA验证许多异构产品和过程设计。就仿真精度而言,可以以不同的功能轻松实现多保真FEA仿真。但是,由于其复杂性,高保真FEA仿真非常耗时,降低了AM中产品实现的效率,而低保真FEA仿真具有运算速度快但功能有限的特点。因此,我们的目标是通过提供有效的数据驱动模型来提高FEA的能力。在这项研究中 提出了一种基于高保真过程约束的通用路径模型,以基于低保真结果逐像素地逼近高保真FEA仿真结果。拟议的模型通过合并产品设计信息(例如,沉积序列的笛卡尔坐标)和来自FEA模拟输入(例如输入热量)的过程设计信息,量化了低保真度和高保真度FEA模拟结果之间的异质差异。因此,它能够根据仿真结果以所需的能力及时验证新产品和工艺设计。该方法的优点通过具有两个保真度(即低保真度和高保真度)的熔融沉积建模(FDM)过程的FEA仿真得以说明。拟议的模型通过合并产品设计信息(例如,沉积序列的笛卡尔坐标)和来自FEA模拟输入(例如,输入热量)的过程设计信息,量化了低保真度和高保真度的FEA模拟结果之间的异质差异。因此,它可以根据仿真结果以所需的能力及时验证新产品和工艺设计。该方法的优点通过具有两个保真度(即低保真度和高保真度)的熔融沉积建模(FDM)过程的FEA仿真得以说明。拟议的模型通过合并产品设计信息(例如,沉积序列的笛卡尔坐标)和来自FEA模拟输入(例如输入热量)的过程设计信息,量化了低保真度和高保真度FEA模拟结果之间的异质差异。因此,它可以根据仿真结果以所需的能力及时验证新产品和工艺设计。该方法的优点通过具有两个保真度(即低保真度和高保真度)的熔融沉积建模(FDM)过程的FEA仿真得以说明。沉积序列的笛卡尔坐标)和来自FEA模拟输入(例如,输入热量)的工艺设计信息。因此,它能够根据仿真结果以所需的能力及时验证新产品和工艺设计。该方法的优点通过具有两个保真度(即低保真度和高保真度)的熔融沉积建模(FDM)过程的FEA仿真得以说明。沉积序列的笛卡尔坐标)和来自FEA模拟输入(例如,输入热量)的工艺设计信息。因此,它能够根据仿真结果以所需的能力及时验证新产品和工艺设计。该方法的优点通过具有两个保真度(即低保真度和高保真度)的熔融沉积建模(FDM)过程的FEA仿真得以说明。

更新日期:2020-05-26
down
wechat
bug