当前位置: X-MOL 学术Nanotechnology › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Design of high-performance plasmonic nanosensors by particle swarm optimization algorithm combined with machine learning
Nanotechnology ( IF 3.5 ) Pub Date : 2020-06-30 , DOI: 10.1088/1361-6528/ab95b8
Ruoqin Yan 1 , Tao Wang , Xiaoyun Jiang , Qingfang Zhong , Xing Huang , Lu Wang , Xinzhao Yue
Affiliation  

Metallic plasmonic nanosensors that are ultra-sensitive, label-free, and operate in real time hold great promise in the field of chemical and biological research. Conventionally, the design of these nanostructures has strongly relied on time-consuming electromagnetic simulations that iteratively solve Maxwell's equations to scan multi-dimensional parameter space until the desired sensing performance is attained. Here, we propose an algorithm based on particle swarm optimization (PSO), which in combination with a machine learning (ML) model, is used to design plasmonic sensors. The ML model is trained with the geometric structure and sensing performance of the plasmonic sensor to accurately capture the geometry-sensing performance relationships, and the well-trained ML model is then applied to the PSO algorithm to obtain the plasmonic structure with the desired sensing performance. Using the trained ML model to predict the sensing performance instead of using complex electromagnetic calculation methods allows the PSO algorithm to optimize the solutions fours orders of magnitude faster. Implementation of this composite algorithm enabled us to quickly and accurately realize a nanoridge plasmonic sensor with sensitivity as high as 142,500 nm/RIU. We expect this efficient and accurate approach to pave the way for the design of nanophotonic devices in future.

中文翻译:

粒子群优化算法结合机器学习设计高性能等离子体纳米传感器

超灵敏、无标记、实时操作的金属等离子体纳米传感器在化学和生物研究领域具有广阔的前景。传统上,这些纳米结构的设计强烈依赖于耗时的电磁模拟,这些模拟迭代求解麦克斯韦方程组以扫描多维参数空间,直到获得所需的传感性能。在这里,我们提出了一种基于粒子群优化 (PSO) 的算法,该算法与机器学习 (ML) 模型相结合,用于设计等离子体传感器。ML模型使用等离子体传感器的几何结构和传感性能进行训练,以准确捕捉几何-传感性能关系,然后将训练有素的 ML 模型应用于 PSO 算法以获得具有所需传感性能的等离子体结构。使用经过训练的 ML 模型来预测传感性能,而不是使用复杂的电磁计算方法,允许 PSO 算法以四个数量级的速度优化解决方案。这种复合算法的实施使我们能够快速准确地实现灵敏度高达 142,500 nm/RIU 的纳米脊等离子体传感器。我们期望这种高效而准确的方法为未来纳米光子器件的设计铺平道路。使用经过训练的 ML 模型来预测传感性能,而不是使用复杂的电磁计算方法,允许 PSO 算法以四个数量级的速度优化解决方案。这种复合算法的实施使我们能够快速准确地实现灵敏度高达 142,500 nm/RIU 的纳米脊等离子体传感器。我们期望这种高效而准确的方法为未来纳米光子器件的设计铺平道路。使用经过训练的 ML 模型来预测传感性能,而不是使用复杂的电磁计算方法,允许 PSO 算法以四个数量级的速度优化解决方案。这种复合算法的实施使我们能够快速准确地实现灵敏度高达 142,500 nm/RIU 的纳米脊等离子体传感器。我们期望这种高效而准确的方法为未来纳米光子器件的设计铺平道路。
更新日期:2020-06-30
down
wechat
bug