当前位置: X-MOL 学术Macromol. Biosci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Semi-Interpenetrated Hydrogels-Microfibers Electroactive Assemblies for Release and Real-Time Monitoring of Drugs.
Macromolecular Bioscience ( IF 4.6 ) Pub Date : 2020-05-25 , DOI: 10.1002/mabi.202000074
Ali Moghimiardekani 1 , Brenda G Molina 1 , Hamidreza Enshaei 1 , Luis J Del Valle 1 , Maria M Pérez-Madrigal 1, 2 , Francesc Estrany 1 , Carlos Alemán 1, 2
Affiliation  

Simultaneous drug release and monitoring using a single polymeric platform represents a significant advance in the utilization of biomaterials for therapeutic use. Tracking drug release by real‐time electrochemical detection using the same platform is a simple way to guide the dosage of the drug, improve the desired therapeutic effect, and reduce the adverse side effects. The platform developed in this work takes advantage of the flexibility and loading capacity of hydrogels, the mechanical strength of microfibers, and the capacity of conducting polymers to detect the redox properties of drugs. The engineered platform is prepared by assembling two spin‐coated layers of poly‐γ‐glutamic acid hydrogel, loaded with poly(3,4‐ethylenedioxythiophene) (PEDOT) microparticles, and separated by a electrospun layer of poly‐ε‐caprolactone microfibers. Loaded PEDOT microparticles are used as reaction nuclei for the polymerization of poly(hydroxymethyl‐3,4‐ethylenedioxythiophene) (PHMeDOT), that semi‐interpenetrate the whole three layered system while forming a dense network of electrical conduction paths. After demonstrating its properties, the platform is loaded with levofloxacin and its release monitored externally by UV–vis spectroscopy and in situ by using the PHMeDOT network. In situ real‐time electrochemical monitoring of the drug release from the engineered platform holds great promise for the development of multi‐functional devices for advanced biomedical applications.

中文翻译:

用于药物释放和实时监测的半互穿水凝胶-微纤维电活性组件。

使用单个聚合物平台进行的同时药物释放和监控代表了生物材料在治疗用途中的重大进步。使用同一平台通过实时电化学检测跟踪药物释放是一种简单的方法,可以指导药物剂量,改善所需的治疗效果并减少不良副作用。在这项工作中开发的平台利用了水凝胶的柔韧性和负载能力,微纤维的机械强度以及导电聚合物检测药物氧化还原特性的能力。该工程平台是通过组装两层旋涂的聚γ-谷氨酸水凝胶,负载有聚(3,4-乙撑二氧噻吩)(PEDOT)微粒,并由聚ε-己内酯超细纤维电纺丝层隔开而制成的。负载的PEDOT微粒用作聚(羟甲基-3,4-亚乙基二氧噻吩)(PHMeDOT)聚合的反应核,它半穿透整个三层系统,同时形成密集的导电路径网络。在证明了其特性之后,该平台装载了左氧氟沙星,并通过紫外可见光谱从外部监测其释放,并使用PHMeDOT网络对其进行现场监测。从工程平台上进行药物释放的现场实时电化学监测对于开发用于高级生物医学应用的多功能设备具有广阔的前景。半穿透整个三层系统,同时形成密集的导电路径网络。在证明了其特性之后,该平台装载了左氧氟沙星,并通过紫外可见光谱从外部监测其释放,并使用PHMeDOT网络对其进行现场监测。从工程平台上进行药物释放的现场实时电化学监测对于开发用于高级生物医学应用的多功能设备具有广阔的前景。半穿透整个三层系统,同时形成密集的导电路径网络。在证明了其特性之后,该平台装载了左氧氟沙星,并通过紫外可见光谱从外部监测其释放,并使用PHMeDOT网络对其进行现场监测。从工程平台上进行药物释放的现场实时电化学监测对于开发用于高级生物医学应用的多功能设备具有广阔的前景。
更新日期:2020-05-25
down
wechat
bug