当前位置: X-MOL 学术Transp Porous Media › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Contribution to the Modelling of Coupled Heat and Mass Transfers on 3D Real Structure of Heterogeneous Building Materials: Application to Hemp Concrete
Transport in Porous Media ( IF 2.7 ) Pub Date : 2020-05-25 , DOI: 10.1007/s11242-020-01426-9
Fares Bennai , Kamilia Abahri , Rafik Belarbi

Bio-based materials, such as hemp concrete, have been widely recommended to reduce carbon emissions and energy consumption of buildings as a means of addressing current environmental problems. These materials may possess very interesting hygrothermal and acoustic performance. Hemp concrete is composed of hemp particles embedded in a binder that forms a very heterogeneous and porous component. The aim of this paper is to examine the influence of hemp concrete heterogeneity on the mechanisms of heat and mass transfer. The originality of this paper is to consider the real 3D structure of hemp concrete for modelling coupled heat and moisture transfers within the material. These 3D microstructures were obtained using 3D X-ray tomography reconstruction with a voxel size of 31.8 µm. Then, a specific finite element mesh was generated from the real, heterogeneous geometry of hemp shives, binder and interparticle air. A mesoscopic model was developed to simulate coupled heat and mass transfer phenomena within the material. The 3D temperature and relative humidity fields showed high heterogeneity and complex distributions that are governed by the hemp concrete morphology. In addition, the anisotropy of the material led to different effective thermal conductivities in each transfer direction. Numerical comparison with simulations performed on the fictive elementary representative volume of hemp concrete showed that consideration of the real geometry allows a better understanding of coupled heat and moisture transfer phenomena modelling.

中文翻译:

对异质建筑材料 3D 真实结构耦合传热和传质建模的贡献:在大麻混凝土中的应用

生物基材料,如大麻混凝土,已被广泛推荐用于减少建筑物的碳排放和能源消耗,作为解决当前环境问题的一种手段。这些材料可能具有非常有趣的湿热和声学性能。大麻混凝土由嵌入粘合剂中的大麻颗粒组成,该粘合剂形成了一种非常不均匀和多孔的成分。本文的目的是研究大麻混凝土的异质性对传热传质机制的影响。本文的独创性是考虑大麻混凝土的真实 3D 结构,以模拟材料内的热湿传递耦合。这些 3D 微结构是使用 3D X 射线断层扫描重建获得的,体素尺寸为 31.8 µm。然后,一个特定的有限元网格是从真实的,大麻碎屑、粘合剂和颗粒间空气的异质几何形状。开发了一种细观模型来模拟材料内的耦合传热和传质现象。3D 温度和相对湿度场显示出高度的异质性和复杂的分布,这是由大麻混凝土形态控制的。此外,材料的各向异性导致每个传输方向上的有效热导率不同。与对大麻混凝土的虚构基本代表体积进行的模拟进行的数值比较表明,考虑真实几何形状可以更好地理解耦合的热和湿气传递现象建模。开发了一种细观模型来模拟材料内的耦合传热和传质现象。3D 温度和相对湿度场显示出高度的异质性和复杂的分布,这是由大麻混凝土形态控制的。此外,材料的各向异性导致每个传输方向上的有效热导率不同。与对大麻混凝土的虚构基本代表体积进行的模拟进行的数值比较表明,考虑真实几何形状可以更好地理解耦合的热和湿气传递现象建模。开发了一种细观模型来模拟材料内的耦合传热和传质现象。3D 温度和相对湿度场显示出高度的异质性和复杂的分布,这是由大麻混凝土形态控制的。此外,材料的各向异性导致每个传输方向上的有效热导率不同。与对大麻混凝土的虚构基本代表体积进行的模拟进行的数值比较表明,考虑真实几何形状可以更好地理解耦合的热和湿气传递现象建模。材料的各向异性导致每个传输方向上的有效热导率不同。与对大麻混凝土的虚构基本代表体积进行的模拟进行的数值比较表明,考虑真实几何形状可以更好地理解耦合的热和湿气传递现象建模。材料的各向异性导致每个传输方向上的有效热导率不同。与对大麻混凝土的虚构基本代表体积进行的模拟进行的数值比较表明,考虑真实几何形状可以更好地理解耦合的热和湿气传递现象建模。
更新日期:2020-05-25
down
wechat
bug