当前位置: X-MOL 学术Eur. Phys. J. C › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Electric and magnetic axion quark nuggets, their stability and their detection
The European Physical Journal C ( IF 4.4 ) Pub Date : 2020-05-25 , DOI: 10.1140/epjc/s10052-020-8027-2
Osvaldo P. Santillán , Matías Sempé

The present work studies the dynamics of axion quark nuggets introduced in Zhitnitsky (JCAP 0310:010, 2003) and developed further in the works (Zhitnitsky in Phys Rev D 74:043515, 2006; Lawson and Zhitnitsky in Phys Lett B 724, 17, 2013; Lawson and Zhitnitsky in Phys Rev D 95:063521, 2017; Liang and Zhitnitsky in Phys Rev D 94:083502, 2016; Ge et al. in Phys Rev D 97:043008, 2018; Zhitnitsky in Phys Dark Univ 22:1, 2018; Lawson and Zhitnitsky in Phys Dark Univ 100295, 2019; Raza et al. in Phys Rev D 98:103527, 2018; Fischer et al. in Phys Rev D 98:043013, 2018; van Waerbeke and Zhitnitsky in Phys Rev D 99:043535, 2019; Flambaum and Zhitnitsky in Phys Rev D 99:043535, 2019; Lawson and Zhitnitsky in JCAP 02:049, 2017; Ge et al. in Phys Rev D 99:116017, 2019). The new feature considered here is the possibility that these nuggets become ferromagnetic. This possibility was pointed out in Tatsumi (Phys Lett B 489:280 2000) for ordinary quark nuggets, although ferromagnetism may also take place due some anomaly terms found in Son and Zhitnitsky (Phys Rev D 70:074018, 2004), Son and Stephanov (Phys Rev D 77:014021, 2008) and Melitski and Zhitnitsky (Phys Rev D 72:045011, 2005). The purpose of the present letter however, is not to give evidence in favor or against these statements. Instead, it is focused in some direct consequences of this ferromagnetic behavior, if it exists. The first is that the nugget magnetic field induces an electric field due to the axion wall, which may induce pair production by Schwinger effect. Depending on the value of the magnetic field, the pair production can be quite large. A critical value for such magnetic field at the surface of the nugget is obtained, and it is argued that the value of the magnetic field of Tatsumi (2000) is at the verge of stability and may induce large pair production. The consequences of this enhanced pair production may be unclear. It may indicate that the the nugget evaporates, but on the other hand it may be just an indication that the intrinsic magnetic field disappears and the nuggets evolves to a non magnetized state such as in Zhitnitsky (2003), Oaknin and Zhitnitsky (Phys. Rev. D 71:023519, 2005), Zhitnitsky (2006), Lawson and Zhitnitsky (2013), Lawson and Zhitnitsky (2017), Liang and Zhitnitsky (2016), Ge et al. (2018), Zhitnitsky (2018), Lawson and Zhitnitsky (2019), Raza et al. (2018), Fischer et al. (2018), van Waerbeke and Zhitnitsky (2019), Flambaum and Zhitnitsky (2019), Lawson and Zhitnitsky (2017), and Ge et al. (2019). The interaction of such magnetic and electric nugget with the troposphere of the earth is also analyzed. It is suggested that the cross section with the troposphere is enhanced in comparison with a non magnetic nugget but still, it does not violate the dark matter collision bounds. Consequently, these nuggets may be detected by impacts on water or by holes in the mountain craters (Pace VanDevender et al. in Sci Rep 7:8758, 2017). However, if the magnetic field does not decay before the actual universe, then this would lead to high energy electron flux due to its interaction with the electron gases of the Milky Way. This suggests that these magnetized quarks may be a considerably part of dark matter, but only if their hypothetical magnetic and electric fields are evaporated.

中文翻译:

电磁斧夸克块,其稳定性和检测

本工作研究了在奇蒂尼茨基(JCAP 0310:010,2003)中引入并在其著作中进一步发展的轴夸克矿块的动力学(Zhitnitsky在Phys Rev D 74:043515,2006; Lawson和Zhitnitsky在Phys Lett B 724,17, 2013; Law Rev D 95:063521,2017的Lawson和Zhitnitsky; Phys Rev D 94:083502,2016的Liang和Zhitnitsky; Phys Rev D 97:043008,2018的Ge等人; Phys Dark Univ 22:1的Zhitnitsky ,2018年; Lawson和Zhitnitsky在Phys Dark Univ 100295,2019中; Raza等人在Phys Rev D 98:103527,2018中; Fischer等人在Phys Rev D 98:043013,2018中; van Waerbeke和Zhitnitsky在Phys Rev D中99:043535,2019; Flambaum和Zhitnitsky在Phys Rev D 99:043535,2019; Lawson和Zhitnitsky在JCAP 02:049,2017; Ge等人在Phys Rev D 99:116017,2019)。此处考虑的新功能是这些块具有铁磁性的可能性。Tatsumi(Phys Lett B 489:280 2000)针对普通夸克块指出了这种可能性,尽管由于Son和Zhitnitsky(Phys Rev D 70:074018,2004),Son和Stephanov中发现的某些异常术语,也可能发生铁磁性。 (Phys Rev D 77:014021,2008)和Melitski and Zhitnitsky(Phys Rev D 72:045011,2005)。但是,本信的目的不是提供赞成或反对这些声明的证据。相反,它着重于这种铁磁行为(如果存在)的一些直接后果。首先是,由于轴突壁,熔核磁场会感应电场,这可能会通过Schwinger效应感应成对产生。取决于磁场的值,线对的产生可能会很大。获得了在熔核表面的这种磁场的临界值,有人认为,Tatsumi(2000)的磁场值处于稳定的边缘,并可能诱发大的成对产生。这种增强的配对生产的后果可能尚不清楚。它可能表明核块已经蒸发,但是另一方面,这可能表明内在磁场消失并且核块演变成非磁化状态,例如Zhitnitsky(2003),Oaknin和Zhitnitsky(Phys。Rev. D 71:023519,2005),Zhitnitsky(2006),Lawson and Zhitnitsky(2013),Lawson and Zhitnitsky(2017),Liang and Zhitnitsky(2016),Ge等。(2018),Zhitnitsky(2018),Lawson和Zhitnitsky(2019),Raza等人。(2018),Fischer等。(2018),van Waerbeke和Zhitnitsky(2019),Flambaum和Zhitnitsky(2019),Lawson和Zhitnitsky(2017)和Ge等。(2019)。还分析了这种磁电核与地球对流层的相互作用。建议与非磁性核相比,对流层的横截面有所增强,但仍不违反暗物质碰撞界限。因此,这些金块可以通过对水的撞击或山坑中的洞来检测到(Pace VanDevender等人,Sci Rep 7:8758,2017)。但是,如果磁场在实际宇宙之前没有衰减,则由于其与银河系电子气体的相互作用,将导致高能电子通量。这表明这些磁化夸克可能是暗物质的相当一部分,但前提是它们的假设磁场和电场均已蒸发。建议与非磁性核相比,对流层的横截面有所增强,但仍不违反暗物质碰撞界限。因此,这些金块可以通过对水的撞击或山坑中的洞来检测到(Pace VanDevender等人,Sci Rep 7:8758,2017)。但是,如果磁场在实际宇宙之前没有衰减,则由于其与银河系电子气体的相互作用,将导致高能电子通量。这表明这些磁化夸克可能是暗物质的相当一部分,但前提是它们的假设磁场和电场均已蒸发。建议与非磁性核相比,对流层的横截面有所增强,但仍不违反暗物质碰撞界限。因此,这些金块可以通过对水的撞击或山坑中的洞来检测到(Pace VanDevender等人,Sci Rep 7:8758,2017)。但是,如果磁场在实际宇宙之前没有衰减,则由于其与银河系电子气体的相互作用,将导致高能电子通量。这表明这些磁化的夸克可能是暗物质的相当大的一部分,但前提是它们的假设磁场和电场均已蒸发。因此,这些金块可以通过对水的撞击或山坑中的洞来检测到(Pace VanDevender等人,Sci Rep 7:8758,2017)。但是,如果磁场在实际宇宙之前没有衰减,则由于其与银河系电子气体的相互作用,将导致高能电子通量。这表明这些磁化夸克可能是暗物质的相当一部分,但前提是它们的假设磁场和电场均已蒸发。因此,这些金块可以通过对水的撞击或山坑中的洞来检测到(Pace VanDevender等人,Sci Rep 7:8758,2017)。但是,如果磁场在实际宇宙之前没有衰减,则由于其与银河系电子气体的相互作用,将导致高能电子通量。这表明这些磁化夸克可能是暗物质的相当一部分,但前提是它们的假设磁场和电场均已蒸发。
更新日期:2020-05-25
down
wechat
bug