当前位置: X-MOL 学术J. Therm. Spray Tech. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Residual Stress Distributions in Cold-Sprayed Copper 3D-Printed Parts
Journal of Thermal Spray Technology ( IF 3.1 ) Pub Date : 2020-05-25 , DOI: 10.1007/s11666-020-01040-7
Rebecca Sinclair-Adamson , Vladimir Luzin , Andrew Duguid , Krishnan Kannoorpatti , Rebecca Murray

Cold-spray additive manufacturing (CSAM) builds strong, dense metal parts from powder feedstock without melting and offers potential advantages over alternatives such as casting, liquid phase sintering, laser or e-beam melting or welding. Considerable effort is required to relieve residual stresses that arise from melt/freeze cycling in these methods. While CSAM does not involve melting, it imposes high strain rates on the feedstock and stress anisotropies due to complex build paths. This project explores residual stress in two CSAM objects. The CSAM components were produced from 99% pure copper powder (D50 = 17 µm): (1) a cylinder ( ∅ = 15 mm, height = 100 mm, weight = 145 g) and (2) a funnel (upper outer ∅ = 60 mm, lower outer ∅ = 40 mm, wall thickness = 8 mm, weight = 547 g). The non-heat-treated components were strain-scanned using a residual stress neutron diffractometer. Maximum residual stresses in any direction were: tensile: 103 ± 16 MPa (cylinder) and 100 ± 23 MPa (funnel); compression: 58 ± 16 MPa (cylinder) and 123 ± 23 MPa (funnel). Compared to the literature, the tensile residual stresses measured in the CSAM components were lower than those measured in cast materials, laser or welding AM methods, and numerical modelling of cold-spray coatings, while within the wide range reported for measurements in cold-spray coatings. These comparatively low residual stresses suggest CSAM is a promising manufacturing method where high residual stresses are undesirable.

中文翻译:

冷喷涂铜 3D 打印部件中的残余应力分布

冷喷涂增材制造 (CSAM) 无需熔化即可从粉末原料中构建坚固、致密的金属零件,并且与铸造、液相烧结、激光或电子束熔化或焊接等替代方法相比具有潜在优势。需要付出相当大的努力来减轻这些方法中由熔化/冷冻循环引起的残余应力。虽然 CSAM 不涉及熔化,但由于复杂的构建路径,它对原料和应力各向异性施加了高应变率。该项目探索了两个 CSAM 对象中的残余应力。CSAM 组件由 99% 纯铜粉 (D50 = 17 µm) 制成:(1) 圆柱体 (∅ = 15 mm,高度 = 100 mm,重量 = 145 g) 和 (2) 漏斗(上部外∅ = 60 毫米,下部外 ∅ = 40 毫米,壁厚 = 8 毫米,重量 = 547 克)。使用残余应力中子衍射仪对未热处理的部件进行应变扫描。任何方向的最大残余应力为:拉伸:103±16 MPa(圆柱)和100±23 MPa(漏斗);压缩压力:58 ± 16 MPa(气缸)和 123 ± 23 MPa(漏斗)。与文献相比,在 CSAM 组件中测量的拉伸残余应力低于在铸造材料、激光或焊接 AM 方法以及冷喷涂涂层的数值模型中测量的那些,而在冷喷涂测量报告的范围内涂料。这些相对较低的残余应力表明 CSAM 是一种很有前途的制造方法,其中不希望高残余应力。58 ± 16 MPa(圆筒)和 123 ± 23 MPa(漏斗)。与文献相比,在 CSAM 组件中测量的拉伸残余应力低于在铸造材料、激光或焊接 AM 方法以及冷喷涂涂层的数值模型中测量的那些,而在冷喷涂测量报告的范围内涂料。这些相对较低的残余应力表明 CSAM 是一种很有前途的制造方法,其中不希望高残余应力。58 ± 16 MPa(圆筒)和 123 ± 23 MPa(漏斗)。与文献相比,在 CSAM 组件中测量的拉伸残余应力低于在铸造材料、激光或焊接 AM 方法以及冷喷涂涂层的数值模型中测量的那些,而在冷喷涂测量报告的范围内涂料。这些相对较低的残余应力表明 CSAM 是一种很有前途的制造方法,其中不希望高残余应力。
更新日期:2020-05-25
down
wechat
bug